Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Effects and mechanisms of docosahexaenoic acid on the generation of angiopoietin-2 by rat brain microvascular endothelial cells under an oxygen- and glucose-deprivation environment

, , ,

SpringerPlus

Springer International Publishing

DHA, OGD environment, COX-2, Ang-2

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      ObjectiveThe aim of this study was to investigate the effects of docosahexaenoic acid (DHA) on the generation of angiopoietin-2 (Ang-2) by rat brain microvascular endothelial cells under an oxygen- and glucose-deprivation environment (OGD), and its relationship, if any, with cyclooxygenase 2 (COX-2) expression.MethodsAnnexin V and propidium iodide apoptosis assay was used to detect apoptosis. Enzyme linked immunosorbent assay was used to detect Ang-2, vascular endothelial growth factor (VEGF), prostaglandin E2 (PGE2), and prostaglandin I2 (PGI2) content. Reverse transcription polymerase chain reaction (RT-PCR) was used to detect Ang-2 and VEGF mRNA expression. Western blot was used to detect expression of COX-2 protein.ResultsDHA reduced the apoptosis rate (P = 0.026) and decreased the secretion of Ang-2, VEGF, PGE2, and PGI2 (P = 0.006, P = 0.000, P = 0.002, P = 0.004 respectively). The relative expression of Ang2 and Vegf mRNA, as well as COX-2 expression, also decreased (P = 0.000, P = 0.005, P = 0.007 respectively). These effects were antagonized by GW9662 (peroxisome proliferator-activated receptor-γ antagonist). COX-2 protein expression levels were positively correlated with Ang2 and Vegf mRNA expression levels (γ = 0.69, P = 0.038 and γ = 0.76, P = 0.032, respectively). Ang-2 and VEGF mRNA levels were positively correlated with Ang-2 (γ = 0.84, P = 0.012) and VEGF (γ = 0.71, P = 0.036) secretion levels respectively.ConclusionDHA reduced apoptosis induced by an OGD environment, thus decreasing Ang-2 and VEGF synthesis. This phenomenon was associated with a decrease in COX-2 protein expression, PGE2 and PGI2 secretion, and generation regulation via intracellular transcriptional pathways.

      Related collections

      Most cited references 27

      • Record: found
      • Abstract: found
      • Article: not found

      Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo.

      Modulation of Tie2 receptor activity by its angiopoietin ligands is crucial for angiogenesis, blood vessel maturation, and vascular endothelium integrity. It has been proposed that angiopoietins 1 (Ang1) and 2 (Ang2) are pro- and anti-angiogenic owing to their respective agonist and antagonist signaling action through the Tie2 receptor. The function of Ang2 has remained controversial, however, with recent reports suggesting that in some circumstances, it may be pro-angiogenic. We have examined this issue using the transient ocular microvessel network called the pupillary membrane as a unique in vivo model for studying the effects of vascular regulators. We show that in vivo, in the presence of endogenous vascular endothelial growth factor (VEGF)-A, Ang2 promotes a rapid increase in capillary diameter, remodeling of the basal lamina, proliferation and migration of endothelial cells, and stimulates sprouting of new blood vessels. By contrast, Ang2 promotes endothelial cell death and vessel regression if the activity of endogenous VEGF is inhibited. These observations support a model for regulation of vascularity where VEGF can convert the consequence of Ang2 stimulation from anti- to pro-angiogenic.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Lactate engages receptor tyrosine kinases Axl, Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3-kinase/Akt and promote angiogenesis.

        Although a high level of lactate is quintessential to both tumors and wound healing, the manner by which lactate impacts endothelial cells to promote angiogenesis and thereby create or restore vascular perfusion to growing tissues has not been fully elucidated. Here we report that lactate activated the PI3K/Akt pathway in primary human endothelial cells. Furthermore, activating this signaling pathway was required for lactate-stimulated organization of endothelial cells into tubes and for sprouting of vessels from mouse aortic explants. Lactate engaged the PI3K/Akt pathway via ligand-mediated activation of the three receptor tyrosine kinases Axl, Tie2, and VEGF receptor 2. Neutralizing the ligands for these receptor tyrosine kinases, pharmacologically inhibiting their kinase activity or suppressing their expression largely eliminated the ability of cells and explants to respond to lactate. Elucidating the mechanism by which lactate communicates with endothelial cells presents a previously unappreciated opportunity to improve our understanding of the angiogenic program and to govern it.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Hypoxic regulation of angiopoietin-2 expression in endothelial cells.

          Exposure of endothelial cells to hypoxia-induced angiopoietin-2 (Ang2) expression. The increase in Ang2 mRNA levels occurred by transcriptional regulation and by post-transcriptional increase in mRNA stability. Induction of Ang2 mRNA resulted in an increase of intracellular and secreted Ang2 protein levels. Since the transcriptional regulation of several genes involved in angiogenesis during hypoxia is mediated by hypoxia-inducible factor-1 (HIF-1), it was conceivable that Ang2 expression might be regulated by the same oxygen-dependent mechanism. However, our data showed that pharmacological HIF inducers, CoCl(2) and DFO, did not affect Ang2 expression. Moreover, HIF-1-deficient hepatoma cell (Hepa1 c4) and its wild-type counterpart (Hepa1 c1c4) up-regulates Ang2 during hypoxia. These results indicated that hypoxia-driven Ang2 expression may be independent of the HIF pathway. Using neutralizing VEGF antibody or pharmacological inhibitors of VEGF receptors, we showed that hypoxia-induced VEGF participates but could not account completely for Ang2 expression during hypoxia. In addition, hypoxia elicited an increase of cyclooxygenase-2 (COX-2) expression and a parallel increase in prostanglandin E(2) (PGE(2)) and prostacyclin (PGI(2)) production. COX-2 inhibitors decreased the hypoxic induction of Ang2 and the hypoxic induction of PGE(2) and PGI(2) in a dose-dependent manner. Similarly, COX-2 but not COX-1 antisense treatment decreased hypoxic induction of Ang2 expression, and this effect was reversed by exogenous PGE(2). Finally, exogenous PGE(2) and PGI(2) were able to stimulate Ang2 under normoxic conditions. These findings suggest that COX-2-dependent prostanoids may play an important role in the regulation of hypoxia-induced Ang2 expression.
            Bookmark

            Author and article information

            Affiliations
            Department of Anesthesiology, Three Gorges University People’s Hospital, The First People’s Hospital of Yichang, No. 2 Jiefang Road, Yichang, 443000 Hubei China
            Contributors
            A15871583801@163.com
            yishengweiniqiangu@126.com
            leyunzhan@163.com
            +86 717 6238520 , aihuashudoc@126.com
            Journal
            Springerplus
            Springerplus
            SpringerPlus
            Springer International Publishing (Cham )
            2193-1801
            9 September 2016
            9 September 2016
            2016
            : 5
            : 1
            5017979
            3067
            10.1186/s40064-016-3067-7
            © The Author(s) 2016

            Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

            Categories
            Research
            Custom metadata
            © The Author(s) 2016

            Uncategorized

            ang-2, cox-2, ogd environment, dha

            Comments

            Comment on this article