58
views
0
recommends
+1 Recommend
0 collections
    5
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Incremental Genetic Perturbations to MCM2-7 Expression and Subcellular Distribution Reveal Exquisite Sensitivity of Mice to DNA Replication Stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mutations causing replication stress can lead to genomic instability (GIN). In vitro studies have shown that drastic depletion of the MCM2-7 DNA replication licensing factors, which form the replicative helicase, can cause GIN and cell proliferation defects that are exacerbated under conditions of replication stress. To explore the effects of incrementally attenuated replication licensing in whole animals, we generated and analyzed the phenotypes of mice that were hemizygous for Mcm2, 3, 4, 6, and 7 null alleles, combinations thereof, and also in conjunction with the hypomorphic Mcm4 Chaos3 cancer susceptibility allele. Mcm4 Chaos3/Chaos3 embryonic fibroblasts have ∼40% reduction in all MCM proteins, coincident with reduced Mcm2-7 mRNA. Further genetic reductions of Mcm2, 6, or 7 in this background caused various phenotypes including synthetic lethality, growth retardation, decreased cellular proliferation, GIN, and early onset cancer. Remarkably, heterozygosity for Mcm3 rescued many of these defects. Consistent with a role in MCM nuclear export possessed by the yeast Mcm3 ortholog, the phenotypic rescues correlated with increased chromatin-bound MCMs, and also higher levels of nuclear MCM2 during S phase. The genetic, molecular and phenotypic data demonstrate that relatively minor quantitative alterations of MCM expression, homeostasis or subcellular distribution can have diverse and serious consequences upon development and confer cancer susceptibility. The results support the notion that the normally high levels of MCMs in cells are needed not only for activating the basal set of replication origins, but also “backup” origins that are recruited in times of replication stress to ensure complete replication of the genome.

          Author Summary

          Proper replication of the genome is essential for maintenance of the genetic material and normal cell proliferation. DNA replication can be compromised by exogenous factors and genetic disruptions. Such compromise can lead to disease such as cancer, which is characterized by genomic instability (an elevated mutation rate). Because the DNA replication apparatus is essential, relatively little is known about how genetic variants impact the health of whole animals. In this report, we studied mice bearing combinatorial mutations in a component of the replication apparatus, the MCM2-7 helicase. MCM2-7 is a complex of 6 proteins that are essential for initiating DNA replication along chromosomes, and to unwind the DNA during DNA replication. We find that although cells have excess amounts of MCM2-7 to support proliferation under normal circumstances, that incremental MCM depletions have multiple drastic effects upon the whole animal, including embryonic lethality, stem cells defects, and severe cancer susceptibility. Additionally, we report that mouse cells regulate and coordinate the levels of usable MCM proteins, both at the level of synthesis and also by regulating access to chromatin. The implication is that genetic variants that impact MCM levels, even to a minor degree, can translate into disease.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions.

          DNA damage checkpoint genes, such as p53, are frequently mutated in human cancer, but the selective pressure for their inactivation remains elusive. We analysed a panel of human lung hyperplasias, all of which retained wild-type p53 genes and had no signs of gross chromosomal instability, and found signs of a DNA damage response, including histone H2AX and Chk2 phosphorylation, p53 accumulation, focal staining of p53 binding protein 1 (53BP1) and apoptosis. Progression to carcinoma was associated with p53 or 53BP1 inactivation and decreased apoptosis. A DNA damage response was also observed in dysplastic nevi and in human skin xenografts, in which hyperplasia was induced by overexpression of growth factors. Both lung and experimentally-induced skin hyperplasias showed allelic imbalance at loci that are prone to DNA double-strand break formation when DNA replication is compromised (common fragile sites). We propose that, from its earliest stages, cancer development is associated with DNA replication stress, which leads to DNA double-strand breaks, genomic instability and selective pressure for p53 mutations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase.

            The protein Cdc45 plays a critical but poorly understood role in the initiation and elongation stages of eukaryotic DNA replication. To study Cdc45's function in DNA replication, we purified Cdc45 protein from Drosophila embryo extracts by a combination of traditional and immunoaffinity chromatography steps and found that the protein exists in a stable, high-molecular-weight complex with the Mcm2-7 hexamer and the GINS tetramer. The purified Cdc45/Mcm2-7/GINS complex is associated with an active ATP-dependent DNA helicase function. RNA interference knock-down experiments targeting the GINS and Cdc45 components establish that the proteins are required for the S phase transition in Drosophila cells. The data suggest that this complex forms the core helicase machinery for eukaryotic DNA replication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells.

              Pluripotency can be induced in differentiated murine and human cells by retroviral transduction of Oct4, Sox2, Klf4, and c-Myc. We have devised a reprogramming strategy in which these four transcription factors are expressed from doxycycline (dox)-inducible lentiviral vectors. Using these inducible constructs, we derived induced pluripotent stem (iPS) cells from mouse embryonic fibroblasts (MEFs) and found that transgene silencing is a prerequisite for normal cell differentiation. We have analyzed the timing of known pluripotency marker activation during mouse iPS cell derivation and observed that alkaline phosphatase (AP) was activated first, followed by stage-specific embryonic antigen 1 (SSEA1). Expression of Nanog and the endogenous Oct4 gene, marking fully reprogrammed cells, was only observed late in the process. Importantly, the virally transduced cDNAs needed to be expressed for at least 12 days in order to generate iPS cells. Our results are a step toward understanding some of the molecular events governing epigenetic reprogramming.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                September 2010
                September 2010
                9 September 2010
                : 6
                : 9
                : e1001110
                Affiliations
                [1]Department of Biomedical Sciences and Center for Vertebrate Genomics, Cornell University, Ithaca, New York, United States of America
                The Jackson Laboratory, United States of America
                Author notes

                Conceived and designed the experiments: CHC JCS. Performed the experiments: CHC MDW CA. Analyzed the data: CHC MDW TS JCS. Wrote the paper: CHC TS JCS.

                Article
                10-PLGE-RA-3324R1
                10.1371/journal.pgen.1001110
                2936539
                20838603
                16b92144-4fc3-4be7-9b17-5c5bccc80d20
                Chuang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 1 June 2010
                : 3 August 2010
                Page count
                Pages: 15
                Categories
                Research Article
                Biochemistry/Replication and Repair
                Genetics and Genomics/Animal Genetics
                Genetics and Genomics/Cancer Genetics
                Genetics and Genomics/Chromosome Biology

                Genetics
                Genetics

                Comments

                Comment on this article