19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biotherapeutic Effect of Gingival Stem Cells Conditioned Medium in Bone Tissue Restoration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bone tissue engineering is one of the main branches of regenerative medicine. In this field, the use of a scaffold, which supported bone development, in combination with mesenchymal stem cells (MSCs), has promised better outcomes for bone regeneration. In particular, human gingival mesenchymal stem cells (hGMSCs) may present advantages compared to other MSCs, including the easier isolation. However, MSCs’ secretome has attracted much attention for its potential use in tissue regeneration, such as conditioned medium (CM) that contains different soluble factors proved to be useful for the regenerative purposes. In this study, we evaluated the osteogenic capacity of a poly-(lactide) (3D-PLA) scaffold enriched with hGMSCs and hGMSCs derived CM and its ability to regenerate bone defects in rat calvarias. 3D-PLA alone, 3D-PLA + CM or 3D-PLA + hGMSCs with/without CM were implanted in Wistar male rats subjected to calvarial defects. We observed that 3D-PLA scaffold enriched with hGMSCs and CM showed a better osteogenic capacity, being able to repair the calvarial defect as revealed in vivo by morphological evaluation. Moreover, transcriptomic analysis in vitro revealed the upregulation of genes involved in ossification and regulation of ossification in the 3D-PLA + CM + hGMSCs group. All of these results indicate the great osteogenic ability of 3D-PLA + CM + hGMSCs supporting its use in bone regenerative medicine, in particular in the repair of cranial bone defects. Especially, hGMSCs derived CM played a key role in the induction of the osteogenic process and in bone regeneration.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review.

          Poly(lactic acid) (PLA), so far, is the most extensively researched and utilized biodegradable aliphatic polyester in human history. Due to its merits, PLA is a leading biomaterial for numerous applications in medicine as well as in industry replacing conventional petrochemical-based polymers. The main purpose of this review is to elaborate the mechanical and physical properties that affect its stability, processability, degradation, PLA-other polymers immiscibility, aging and recyclability, and therefore its potential suitability to fulfill specific application requirements. This review also summarizes variations in these properties during PLA processing (i.e. thermal degradation and recyclability), biodegradation, packaging and sterilization, and aging (i.e. weathering and hygrothermal). In addition, we discuss up-to-date strategies for PLA properties improvements including components and plasticizer blending, nucleation agent addition, and PLA modifications and nanoformulations. Incorporating better understanding of the role of these properties with available improvement strategies is the key for successful utilization of PLA and its copolymers/composites/blends to maximize their fit with worldwide application needs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Scaffolds for Bone Tissue Engineering: State of the art and new perspectives.

            This review is intended to give a state of the art description of scaffold-based strategies utilized in Bone Tissue Engineering. Numerous scaffolds have been tested in the orthopedic field with the aim of improving cell viability, attachment, proliferation and homing, osteogenic differentiation, vascularization, host integration and load bearing. The main traits that characterize a scaffold suitable for bone regeneration concerning its biological requirements, structural features, composition, and types of fabrication are described in detail. Attention is then focused on conventional and Rapid Prototyping scaffold manufacturing techniques. Conventional manufacturing approaches are subtractive methods where parts of the material are removed from an initial block to achieve the desired shape. Rapid Prototyping techniques, introduced to overcome standard techniques limitations, are additive fabrication processes that manufacture the final three-dimensional object via deposition of overlying layers. An important improvement is the possibility to create custom-made products by means of computer assisted technologies, starting from patient's medical images. As a conclusion, it is highlighted that, despite its encouraging results, the clinical approach of Bone Tissue Engineering has not taken place on a large scale yet, due to the need of more in depth studies, its high manufacturing costs and the difficulty to obtain regulatory approval. PUBMED search terms utilized to write this review were: "Bone Tissue Engineering", "regenerative medicine", "bioactive scaffolds", "biomimetic scaffolds", "3D printing", "3D bioprinting", "vascularization" and "dentistry".
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Prospect of Stem Cell Conditioned Medium in Regenerative Medicine

              Background. Stem cell-derived conditioned medium has a promising prospect to be produced as pharmaceuticals for regenerative medicine. Objective. To investigate various methods to obtain stem cell-derived conditioned medium (CM) to get an insight into their prospect of application in various diseases. Methods. Systematic review using keywords “stem cell” and “conditioned medium” or “secretome” and “therapy.” Data concerning treated conditions/diseases, type of cell that was cultured, medium and supplements to culture the cells, culture condition, CM processing, growth factors and other secretions that were analyzed, method of application, and outcome were noted, grouped, tabulated, and analyzed. Results. Most of CM using studies showed good results. However, the various CM, even when they were derived from the same kind of cells, were produced by different condition, that is, from different passage, culture medium, and culture condition. The growth factor yields of the various types of cells were available in some studies, and the cell number that was needed to produce CM for one application could be computed. Conclusion. Various stem cell-derived conditioned media were tested on various diseases and mostly showed good results. However, standardized methods of production and validations of their use need to be conducted.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                23 January 2018
                February 2018
                : 19
                : 2
                : 329
                Affiliations
                [1 ]Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; francesca.diomede@ 123456unich.it (F.D.); ilaria.merciaro@ 123456unich.it (I.M.); trubiani@ 123456unich.it (O.T.)
                [2 ]IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; agnesegugli@ 123456hotmail.it (A.G.); domenico.scionti@ 123456gmail.com (D.S.)
                [3 ]Faculté de Médecine, UMR 7365 CNRS-Université de Lorraine, 9, Avenue de la Forêt de Haye, 54500 Vandoeuvre-lés-Nancy, France; mxistocavalcanti@ 123456gmail.com
                [4 ]Laser in Dentistry Program, Cruzeiro do Sul University (UNICSUL), Sao Paulo 08060-070, Brazil
                Author notes
                [* ]Correspondence: emazzon.irccs@ 123456gmail.com ; Tel.: +39-090-6012-8172
                Author information
                https://orcid.org/0000-0003-0334-3423
                Article
                ijms-19-00329
                10.3390/ijms19020329
                5855551
                29360771
                16b96153-773b-48c9-ae78-efbddcf0c94e
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 December 2017
                : 19 January 2018
                Categories
                Article

                Molecular biology
                conditioned medium,gingival fibroblast,biomaterial,tissue regeneration
                Molecular biology
                conditioned medium, gingival fibroblast, biomaterial, tissue regeneration

                Comments

                Comment on this article