196
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analytical and Clinical Performance of the CDC Real Time RT-PCR Assay for Detection and Typing of Dengue Virus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dengue is an acute illness caused by the positive-strand RNA dengue virus (DENV). There are four genetically distinct DENVs (DENV-1–4) that cause disease in tropical and subtropical countries. Most patients are viremic when they present with symptoms; therefore, RT-PCR has been increasingly used in dengue diagnosis. The CDC DENV-1–4 RT-PCR Assay has been developed as an in-vitro diagnostic platform and was recently approved by the US Food and Drug Administration (FDA) for detection of dengue in patients with signs or symptoms of mild or severe dengue. The primers and probes of this test have been designed to detect currently circulating strains of DENV-1–4 from around the world at comparable sensitivity. In a retrospective study with 102 dengue cases confirmed by IgM anti-DENV seroconversion in the convalescent sample, the RT-PCR Assay detected DENV RNA in 98.04% of the paired acute samples. Using sequencing as a positive indicator, the RT-PCR Assay had a 97.92% positive agreement in 86 suspected dengue patients with a single acute serum sample. After extensive validations, the RT-PCR Assay performance was highly reproducible when evaluated across three independent testing sites, did not produce false positive results for etiologic agents of other febrile illnesses, and was not affected by pathological levels of potentially interfering biomolecules. These results indicate that the CDC DENV-1–4 RT-PCR Assay provides a reliable diagnostic platform capable for confirming dengue in suspected cases.

          Author Summary

          Significant expansion of the four DENV serotypes (DENV-1, -2, -3 and -4) has been reported throughout tropical and sub-tropical regions of the world, with estimates of 390 million cases annually. The need has arisen for expanded diagnostic testing for DENV infections in the United States, as dengue infection has been added to the list of national notifiable diseases. Timely and accurate diagnosis of dengue is important for clinical care, disease surveillance, disease prevention, and control activities. However, current testing is performed with laboratory-developed research-based assays available only in a limited number of laboratories that have not been validated or approved for diagnostic testing in the United States. Here we report the development and evaluation of the CDC DENV-1–4 Real Time RT-PCR Assay, the first molecular test approved by the US Food and Drug Administration for the diagnosis and serotyping of DENV in human serum or plasma samples. This test was designed and validated for the detection of contemporary, clinically relevant DENV strains transmitted globally, facilitating the global deployment of the test and increase detection of traveler-associated dengue cases.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Enzyme-linked immunosorbent assay specific to Dengue virus type 1 nonstructural protein NS1 reveals circulation of the antigen in the blood during the acute phase of disease in patients experiencing primary or secondary infections.

          During flavivirus infection in vitro, nonstructural protein NS1 is released in a host-restricted fashion from infected mammalian cells but not vector-derived insect cells. In order to analyze the biological relevance of NS1 secretion in vivo, we developed a sensitive enzyme-linked immunosorbent assay (ELISA) to detect the protein in the sera of dengue virus-infected patients. The assay was based on serotype 1 NS1-specific mouse and rabbit polyclonal antibody preparations for antigen immunocapture and detection, respectively. With purified dengue virus type 1 NS1 as a protein standard, the sensitivity of our capture ELISA was less than 1 ng/ml. When a panel of patient sera was analyzed, the NS1 antigen was found circulating from the first day after the onset of fever up to day 9, once the clinical phase of the disease is over. The NS1 protein could be detected even when viral RNA was negative in reverse transcriptase-PCR or in the presence of immunoglobulin M antibodies. NS1 circulation levels varied among individuals during the course of the disease, ranging from several nanograms per milliliter to several micrograms per milliliter, and peaked in one case at 50 microg/ml of serum. Interestingly, NS1 concentrations did not differ significantly in serum specimens obtained from patients experiencing primary or secondary dengue virus infections. These findings indicate that NS1 protein detection may allow early diagnosis of infection. Furthermore, NS1 circulation in the bloodstream of patients during the clinical phase of the disease suggests a contribution of the nonstructural protein to dengue virus pathogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular evolution and distribution of dengue viruses type 1 and 2 in nature.

            During the past several decades, dengue viruses have progressively extended their geographic distribution, and are currently some of the most important mosquito-borne viruses associated with human illness. Determining the genetic variability and transmission patterns of these RNA viruses is crucial in developing effective control strategies for the disease. Primer-extension sequencing of less than 3% of the dengue genome (across the E/NS1 gene junction) provided sufficient information for estimating genetic relationships among 40 dengue type 1 and 40 type 2 virus isolates from diverse geographic areas and hosts. A quantitative comparison of these 240-nucleotide-long sequences revealed previously unrecognized evolutionary relationships between disease outbreaks. Five distinct virus genotypic groups were detected for each of the two serotypes. The evolutionary rates of epidemic dengue viruses of types 1 and 2 were similar, although the transmission pathways of these viruses around the world are different. For dengue type 2, one genotypic group represents an isolated, forest virus cycle which seems to have evolved independently in West Africa. This is the first genetic evidence of the existence of a sylvatic cycle of dengue virus, which is clearly distinct from outbreak viruses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Serotype-specific detection of dengue viruses in a fourplex real-time reverse transcriptase PCR assay.

              The dengue (DEN) viruses are positive-strand RNA viruses in the genus Flavivirus. Dengue fever and dengue hemorrhagic fever/dengue shock syndrome are important human arboviral diseases caused by infection with one of four closely related but serologically distinct DEN viruses, designated DEN-1, DEN-2, DEN-3, and DEN-4 viruses. All four DEN serotypes are currently co-circulating throughout the subtropics and tropics, and genotypic variation occurs among isolates within a serotype. A real-time quantitative nucleic acid amplification assay has been developed to detect viral RNA of a single DEN virus serotype. Each primer-probe set is DEN serotype specific, yet detects all genotypes in a panel of 7 to 10 representative isolates of a serotype. In single reactions and in fourplex reactions (containing four primer-probe sets in a single reaction mixture), standard dilutions of virus equivalent to 0.002 PFU of DEN-2, DEN-3, and DEN-4 viruses were detected; the limit of detection of DEN-1 virus was 0.5 equivalent PFU. Singleplex and fourplex reactions were evaluated in a panel of 40 viremic serum specimens with 10 specimens per serotype, containing 0.002 to 6,000 equivalent PFU/reaction (0.4 to 1.2 x 10(6) PFU/ml). Viral RNA was detected in all viremic serum specimens in singleplex and fourplex reactions. Thus, this serotype-specific, fourplex real-time reverse transcriptase PCR nucleic acid detection assay can be used as a method for differential diagnosis of a specific DEN serotype in viremic dengue patients and as a tool for rapid identification and serotyping of DEN virus isolates.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                July 2013
                11 July 2013
                : 7
                : 7
                : e2311
                Affiliations
                [1]Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Dengue Branch, San Juan, Puerto Rico, United States of America
                University of California, Berkeley, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: GAS EV JLMJ. Performed the experiments: GAS EV YQ JC JV JFM FM. Analyzed the data: GAS EV FM CC. Contributed reagents/materials/analysis tools: CC HM. Wrote the paper: GAS HM JLMJ.

                Article
                PNTD-D-12-01611
                10.1371/journal.pntd.0002311
                3708876
                23875046
                16ba39fc-75d6-4035-800f-586dd5b5531d
                Copyright @ 2013

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 13 December 2012
                : 31 May 2013
                Page count
                Pages: 15
                Funding
                This study was funded by the Centers for Disease Control and Prevention agency budget for the Division of Vector-Borne Diseases and the Dengue Branch. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine
                Diagnostic Medicine
                Clinical Laboratory Sciences
                Infectious Diseases
                Infectious Disease Control
                Neglected Tropical Diseases
                Travel-Associated Diseases
                Viral Diseases

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article