270
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Using Brain–Computer Interfaces and Brain-State Dependent Stimulation as Tools in Cognitive Neuroscience

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Large efforts are currently being made to develop and improve online analysis of brain activity which can be used, e.g., for brain–computer interfacing (BCI). A BCI allows a subject to control a device by willfully changing his/her own brain activity. BCI therefore holds the promise as a tool for aiding the disabled and for augmenting human performance. While technical developments obviously are important, we will here argue that new insight gained from cognitive neuroscience can be used to identify signatures of neural activation which reliably can be modulated by the subject at will. This review will focus mainly on oscillatory activity in the alpha band which is strongly modulated by changes in covert attention. Besides developing BCIs for their traditional purpose, they might also be used as a research tool for cognitive neuroscience. There is currently a strong interest in how brain-state fluctuations impact cognition. These state fluctuations are partly reflected by ongoing oscillatory activity. The functional role of the brain state can be investigated by introducing stimuli in real-time to subjects depending on the actual state of the brain. This principle of brain-state dependent stimulation may also be used as a practical tool for augmenting human behavior. In conclusion, new approaches based on online analysis of ongoing brain activity are currently in rapid development. These approaches are amongst others informed by new insight gained from electroencephalography/magnetoencephalography studies in cognitive neuroscience and hold the promise of providing new ways for investigating the brain at work.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          BCI2000: a general-purpose brain-computer interface (BCI) system.

          Many laboratories have begun to develop brain-computer interface (BCI) systems that provide communication and control capabilities to people with severe motor disabilities. Further progress and realization of practical applications depends on systematic evaluations and comparisons of different brain signals, recording methods, processing algorithms, output formats, and operating protocols. However, the typical BCI system is designed specifically for one particular BCI method and is, therefore, not suited to the systematic studies that are essential for continued progress. In response to this problem, we have developed a documented general-purpose BCI research and development platform called BCI2000. BCI2000 can incorporate alone or in combination any brain signals, signal processing methods, output devices, and operating protocols. This report is intended to describe to investigators, biomedical engineers, and computer scientists the concepts that the BC12000 system is based upon and gives examples of successful BCI implementations using this system. To date, we have used BCI2000 to create BCI systems for a variety of brain signals, processing methods, and applications. The data show that these systems function well in online operation and that BCI2000 satisfies the stringent real-time requirements of BCI systems. By substantially reducing labor and cost, BCI2000 facilitates the implementation of different BCI systems and other psychophysiological experiments. It is available with full documentation and free of charge for research or educational purposes and is currently being used in a variety of studies by many research groups.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oscillatory gamma activity in humans and its role in object representation.

            We experience objects as whole, complete entities irrespective of whether they are perceived by our sensory systems or are recalled from memory. However, it is also known that many of the properties of objects are encoded and processed in different areas of the brain. How then, do coherent representations emerge? One theory suggests that rhythmic synchronization of neural discharges in the gamma band (around 40 Hz) may provide the necessary spatial and temporal links that bind together the processing in different brain areas to build a coherent percept. In this article we propose that this mechanism could also be used more generally for the construction of object representations that are driven by sensory input or internal, top-down processes. The review will focus on the literature on gamma oscillatory activities in humans and will describe the different types of gamma responses and how to analyze them. Converging evidence that suggests that one particular type of gamma activity (induced gamma activity) is observed during the construction of an object representation will be discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New vistas for alpha-frequency band oscillations.

              The amplitude of alpha-frequency band (8-14 Hz) activity in the human electroencephalogram is suppressed by eye opening, visual stimuli and visual scanning, whereas it is enhanced during internal tasks, such as mental calculation and working memory. alpha-Frequency band oscillations have hence been thought to reflect idling or inhibition of task-irrelevant cortical areas. However, recent data on alpha-amplitude and, in particular, alpha-phase dynamics posit a direct and active role for alpha-frequency band rhythmicity in the mechanisms of attention and consciousness. We propose that simultaneous alpha-, beta- (14-30 Hz) and gamma- (30-70 Hz) frequency band oscillations are required for unified cognitive operations, and hypothesize that cross-frequency phase synchrony between alpha, beta and gamma oscillations coordinates the selection and maintenance of neuronal object representations during working memory, perception and consciousness.
                Bookmark

                Author and article information

                Journal
                Front Psychol
                Front. Psychology
                Frontiers in Psychology
                Frontiers Research Foundation
                1664-1078
                27 May 2011
                2011
                : 2
                : 100
                Affiliations
                [1] 1simpleDonders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Netherlands
                [2] 2simpleInstitute for Computing and Information Sciences, Radboud University Nijmegen Netherlands
                Author notes

                Edited by: Gregor Thut, University of Glasgow, UK

                Reviewed by: Nathan Weisz, University of Konstanz, Germany; Roman Freunberger, University of Salzburg, Austria

                *Correspondence: Ole Jensen, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN Nijmegen, Netherlands. e-mail: ole.jensen@ 123456donders.ru.nl

                This article was submitted to Frontiers in Perception Science, a specialty of Frontiers in Psychology.

                Article
                10.3389/fpsyg.2011.00100
                3108578
                21687463
                16bda01b-9e41-46e3-8f3b-6238bb68edb9
                Copyright © 2011 Jensen, Bahramisharif, Oostenveld, Klanke, Hadjipapas, Okazaki and van Gerven.

                This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.

                History
                : 16 March 2011
                : 06 May 2011
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 108, Pages: 11, Words: 10070
                Categories
                Psychology
                Review Article

                Clinical Psychology & Psychiatry
                electroencephalography,alpha,gamma,attention,magnetoencephalography,man machine interface

                Comments

                Comment on this article