32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effects of physical activity on children’s executive function: Contributions of experimental research on aerobic exercise

      Developmental Review
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Executive function refers to the cognitive processes necessary for goal-directed cognition and behavior, which develop across childhood and adolescence. Recent experimental research indicates that both acute and chronic aerobic exercise promote children's executive function. Furthermore, there is tentative evidence that not all forms of aerobic exercise benefit executive function equally: Cognitively-engaging exercise appears to have a stronger effect than non-engaging exercise on children's executive function. This review discusses this evidence as well as the mechanisms that may underlie the association between exercise and executive function. Research from a variety of disciplines is covered, including developmental psychology, kinesiology, cognitive neuroscience, and biopsychology. Finally, these experimental findings are placed within the larger context of known links between action and cognition in infancy and early childhood, and the clinical and practical implications of this research are discussed.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          The unity and diversity of executive functions and their contributions to complex "Frontal Lobe" tasks: a latent variable analysis.

          This individual differences study examined the separability of three often postulated executive functions-mental set shifting ("Shifting"), information updating and monitoring ("Updating"), and inhibition of prepotent responses ("Inhibition")-and their roles in complex "frontal lobe" or "executive" tasks. One hundred thirty-seven college students performed a set of relatively simple experimental tasks that are considered to predominantly tap each target executive function as well as a set of frequently used executive tasks: the Wisconsin Card Sorting Test (WCST), Tower of Hanoi (TOH), random number generation (RNG), operation span, and dual tasking. Confirmatory factor analysis indicated that the three target executive functions are moderately correlated with one another, but are clearly separable. Moreover, structural equation modeling suggested that the three functions contribute differentially to performance on complex executive tasks. Specifically, WCST performance was related most strongly to Shifting, TOH to Inhibition, RNG to Inhibition and Updating, and operation span to Updating. Dual task performance was not related to any of the three target functions. These results suggest that it is important to recognize both the unity and diversity of executive functions and that latent variable analysis is a useful approach to studying the organization and roles of executive functions. Copyright 2000 Academic Press.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Effects of noise letters upon the identification of a target letter in a nonsearch task

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamic mapping of human cortical development during childhood through early adulthood.

              We report the dynamic anatomical sequence of human cortical gray matter development between the age of 4-21 years using quantitative four-dimensional maps and time-lapse sequences. Thirteen healthy children for whom anatomic brain MRI scans were obtained every 2 years, for 8-10 years, were studied. By using models of the cortical surface and sulcal landmarks and a statistical model for gray matter density, human cortical development could be visualized across the age range in a spatiotemporally detailed time-lapse sequence. The resulting time-lapse "movies" reveal that (i) higher-order association cortices mature only after lower-order somatosensory and visual cortices, the functions of which they integrate, are developed, and (ii) phylogenetically older brain areas mature earlier than newer ones. Direct comparison with normal cortical development may help understanding of some neurodevelopmental disorders such as childhood-onset schizophrenia or autism.
                Bookmark

                Author and article information

                Journal
                Developmental Review
                Developmental Review
                Elsevier BV
                02732297
                December 2010
                December 2010
                : 30
                : 4
                : 331-351
                Article
                10.1016/j.dr.2010.08.001
                3147174
                21818169
                16d493ab-7fab-47cd-a726-89a4a68019b7
                © 2010

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article