11
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Potential roles of GPR120 and its agonists in the management of diabetes

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Free fatty acids (FFAs) serve not only as nutrients that provide energy but also as extracellular signaling molecules that manipulate intracellular physiological events through FFA receptors (FFARs) such as FFAR4. FFAR4 is also known as G-protein coupled receptor 120 (GPR120). The main role of GPR120 is to elicit FFA regulation on metabolism homeostasis. GPR120 agonism correlates with prevention of the occurrence and development of metabolic disorders such as obesity and diabetes. GPR120 activation directly or indirectly inhibits inflammation, modulates hormone secretion from the gastrointestinal tract and pancreas, and regulates lipid and/or glucose metabolism in adipose, liver, and muscle tissues, which may help prevent obesity and diabetes. This review summarizes recent advances in physiological roles of GPR120 in preventing insulin resistance and protecting pancreatic islet function, and examines how resident GPR120 in the pancreas may be involved in modulating pancreatic islet function.

          Related collections

          Most cited references 84

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism.

          Dysregulation of lipid metabolism in individual tissues leads to systemic disruption of insulin action and glucose metabolism. Utilizing quantitative lipidomic analyses and mice deficient in adipose tissue lipid chaperones aP2 and mal1, we explored how metabolic alterations in adipose tissue are linked to whole-body metabolism through lipid signals. A robust increase in de novo lipogenesis rendered the adipose tissue of these mice resistant to the deleterious effects of dietary lipid exposure. Systemic lipid profiling also led to identification of C16:1n7-palmitoleate as an adipose tissue-derived lipid hormone that strongly stimulates muscle insulin action and suppresses hepatosteatosis. Our data reveal a lipid-mediated endocrine network and demonstrate that adipose tissue uses lipokines such as C16:1n7-palmitoleate to communicate with distant organs and regulate systemic metabolic homeostasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Increased number of islet-associated macrophages in type 2 diabetes.

            Activation of the innate immune system in obesity is a risk factor for the development of type 2 diabetes. The aim of the current study was to investigate the notion that increased numbers of macrophages exist in the islets of type 2 diabetes patients and that this may be explained by a dysregulation of islet-derived inflammatory factors. Increased islet-associated immune cells were observed in human type 2 diabetic patients, high-fat-fed C57BL/6J mice, the GK rat, and the db/db mouse. When cultured islets were exposed to a type 2 diabetic milieu or when islets were isolated from high-fat-fed mice, increased islet-derived inflammatory factors were produced and released, including interleukin (IL)-6, IL-8, chemokine KC, granulocyte colony-stimulating factor, and macrophage inflammatory protein 1alpha. The specificity of this response was investigated by direct comparison to nonislet pancreatic tissue and beta-cell lines and was not mimicked by the induction of islet cell death. Further, this inflammatory response was found to be biologically functional, as conditioned medium from human islets exposed to a type 2 diabetic milieu could induce increased migration of monocytes and neutrophils. This migration was blocked by IL-8 neutralization, and IL-8 was localized to the human pancreatic alpha-cell. Therefore, islet-derived inflammatory factors are regulated by a type 2 diabetic milieu and may contribute to the macrophage infiltration of pancreatic islets that we observe in type 2 diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation.

              Omega-3 fatty acids (ω-3 FAs) have potential anti-inflammatory activity in a variety of inflammatory human diseases, but the mechanisms remain poorly understood. Here we show that stimulation of macrophages with ω-3 FAs, including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and other family members, abolished NLRP3 inflammasome activation and inhibited subsequent caspase-1 activation and IL-1β secretion. In addition, G protein-coupled receptor 120 (GPR120) and GPR40 and their downstream scaffold protein β-arrestin-2 were shown to be involved in inflammasome inhibition induced by ω-3 FAs. Importantly, ω-3 FAs also prevented NLRP3 inflammasome-dependent inflammation and metabolic disorder in a high-fat-diet-induced type 2 diabetes model. Our results reveal a mechanism through which ω-3 FAs repress inflammation and prevent inflammation-driven diseases and suggest the potential clinical use of ω-3 FAs in gout, autoinflammatory syndromes, or other NLRP3 inflammasome-driven inflammatory diseases. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2014
                29 July 2014
                : 8
                : 1013-1027
                Affiliations
                School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
                Author notes
                Correspondence: Po Sing Leung, Room 609A, 6/F, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Shatin, Hong Kong, Tel +852 3943 6879, Fax +852 2603 5123, Email psleung@ 123456cuhk.edu.hk
                Article
                dddt-8-1013
                10.2147/DDDT.S53892
                4122337
                © 2014 Zhang and Leung. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Review

                Comments

                Comment on this article