4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Parallel Evolution of Bacillus thuringiensis Toxin Resistance in Lepidoptera

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite the prominent and worldwide use of Bacillus thuringiensis (Bt) insecticidal toxins in agriculture, knowledge of the mechanism by which they kill pests remains incomplete. Here we report genetic mapping of a membrane transporter (ABCC2) to a locus controlling Bt Cry1Ac toxin resistance in two lepidopterans, implying that this protein plays a critical role in Bt function.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          A single p450 allele associated with insecticide resistance in Drosophila.

          Insecticide resistance is one of the most widespread genetic changes caused by human activity, but we still understand little about the origins and spread of resistant alleles in global populations of insects. Here, via microarray analysis of all P450s in Drosophila melanogaster, we show that DDT-R, a gene conferring resistance to DDT, is associated with overtranscription of a single cytochrome P450 gene, Cyp6g1. Transgenic analysis of Cyp6g1 shows that overtranscription of this gene alone is both necessary and sufficient for resistance. Resistance and up-regulation in Drosophila populations are associated with a single Cyp6g1 allele that has spread globally. This allele is characterized by the insertion of an Accord transposable element into the 5' end of the Cyp6g1 gene.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DDT, pyrethrins, pyrethroids and insect sodium channels.

            The long term use of many insecticides is continually threatened by the ability of insects to evolve resistance mechanisms that render the chemicals ineffective. Such resistance poses a serious threat to insect pest control both in the UK and worldwide. Resistance may result from either an increase in the ability of the insect to detoxify the insecticide or by changes in the target protein with which the insecticide interacts. DDT, the pyrethrins and the synthetic pyrethroids (the latter currently accounting for around 17% of the world insecticide market), act on the voltage-gated sodium channel proteins found in insect nerve cell membranes. The correct functioning of these channels is essential for normal transmission of nerve impulses and this process is disrupted by binding of the insecticides, leading to paralysis and eventual death. Some insect pest populations have evolved modifications of the sodium channel protein which prevent the binding of the insecticide and result in the insect developing resistance. Here we review some of the work (done at Rothamsted Research and elsewhere) that has led to the identification of specific residues on the sodium channel that may constitute the DDT and pyrethroid binding sites.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of a gene associated with Bt resistance in Heliothis virescens.

              Transgenic crops producing insecticidal toxins from Bacillus thuringiensis (Bt) are widely used for pest control. Bt-resistant insect strains have been studied, but the molecular basis of resistance has remained elusive. Here, we show that disruption of a cadherin-superfamily gene by retrotransposon-mediated insertion was linked to high levels of resistance to the Bt toxin Cry1Ac in the cotton pest Heliothis virescens. Monitoring the early phases of Bt resistance evolution in the field has been viewed as crucial but extremely difficult, especially when resistance is recessive. Our findings enable efficient DNA-based screening for resistant heterozygotes by directly detecting the recessive allele.
                Bookmark

                Author and article information

                Journal
                Genetics
                Genetics
                Genetics Society of America
                0016-6731
                1943-2631
                October 12 2011
                October 2011
                October 2011
                August 11 2011
                : 189
                : 2
                : 675-679
                Article
                10.1534/genetics.111.130971
                3189815
                21840855
                16f0d5ce-3f74-4cbf-95b1-fa17735bf658
                © 2011
                History

                Comments

                Comment on this article