4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Photogenerating work from polymers

      , , , ,
      Materials Today
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Photomechanics: directed bending of a polymer film by light.

          Polymer solutions and solids that contain light-sensitive molecules can undergo photo-contraction, whereby light energy is converted into mechanical energy. Here we show that a single film of a liquid-crystal network containing an azobenzene chromophore can be repeatedly and precisely bent along any chosen direction by using linearly polarized light. This striking photomechanical effect results from a photoselective volume contraction and may be useful in the development of high-speed actuators for microscale or nanoscale applications, for example in microrobots in medicine or optical microtweezers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A new opto-mechanical effect in solids.

            We propose that large, reversible shape changes in solids, of between 10%-400%, can be induced optically by photoisomerizing monodomain nematic elastomers. Empirical and molecular analysis of shape change and its relation to thermal effects is given along with a simple model of the dynamics of response. Our experiments demonstrate these effects for the first time and theory is compared qualitatively with our results.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid and reversible shape changes of molecular crystals on photoirradiation.

              The development of actuators based on materials that reversibly change shape and/or size in response to external stimuli has attracted interest for some time. A particularly intriguing possibility is offered by light-responsive materials, which allow remote operation without the need for direct contact to the actuator. The photo-response of these materials is based on the photoisomerization of constituent molecules (typically trans-cis isomerization of azobenzene chromophores), which gives rise to molecular motions and thereby deforms the bulk material. This effect has been used to create light-deformable polymer films and gels, but the response of these systems is relatively slow. Here we report that molecular crystals based on diarylethene chromophores and with sizes ranging from 10 to 100 micrometres exhibit rapid and reversible macroscopic changes in shape and size induced by ultraviolet and visible light. We find that on exposure to ultraviolet light, a single crystal of 1,2-bis(2-ethyl-5-phenyl-3-thienyl)perfluorocyclopentene changes from a square shape to a lozenge shape, whereas a rectangular single crystal of 1,2-bis(5-methyl-2-phenyl-4-thiazolyl)perfluorocyclopentene contracts by about 5-7 per cent. The deformed crystals are thermally stable, and switch back to their original state on irradiation with visible light. We find that our crystals respond in about 25 microseconds (that is, about five orders of magnitude faster than the response time of the azobenzene-based polymer systems) and that they can move microscopic objects, making them promising materials for possible light-driven actuator applications.
                Bookmark

                Author and article information

                Journal
                Materials Today
                Materials Today
                Elsevier BV
                13697021
                July 2008
                July 2008
                : 11
                : 7-8
                : 34-42
                Article
                10.1016/S1369-7021(08)70147-0
                16fc8c56-b79e-49af-ad21-7d50ab19e6cd
                © 2008

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article