12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Analysis of In Vivo Aging in Human Bone Marrow Mesenchymal Stromal Cells Using Colony-Forming Unit-Fibroblast Assay and the CD45 lowCD271 + Phenotype

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Uncultured mesenchymal stromal cells (MSCs) are increasingly used in therapies; however, the effects of donor age on their biological characteristics and gene expression remain unclear. The aim of this study was to investigate age-related changes in bone marrow (BM) MSCs following minimal or no culture manipulation. Iliac crest BM was aspirated from 67 healthy donors (19-89 years old) and directly used for the colony-forming unit-fibroblast (CFU-F) assay or CD45 lowCD271 + cell enumeration. The colonies were analysed for colony area and integrated density (ID) when grown in standard MSC media or media supplemented with human serum from young (YS) or old (OS) donors. There was a notable age-related decline in the number of MSCs per millilitre of BM aspirate revealed by the CFU-F assay ( r = −0.527, p < 0.0001) or flow cytometry ( r = −0.307, p = 0.0116). Compared to young donors (19-40 years old), colony IDs were significantly lower in older donors (61-89 years old), particularly for smaller-sized colonies (42% lower, p < 0.01). When cultured in media supplemented with OS, young and old donor MSCs formed colonies with lower IDs, by 21%, p < 0.0001, and 27%, p < 0.05, respectively, indicating the formation of smaller sparser colonies. No significant differences in the expression of selected adipogenic, osteogenic, stromal, and bone remodelling genes as well as CD295, CD146, CD106, and connexin 43 surface molecules were found in sorted CD45 lowCD271 + MSCs from young and old donors ( n = 8 donors each). Altogether, these results show similar trends for age-related decline in BM MSC numbers measured by the CFU-F assay and flow cytometry and reveal age-related effects of human serum on MSC colony formation. No significant differences in selected gene expression in uncultured CD45 lowCD271 + MSCs suggest that old donor MSCs may not be inferior in regard to their multipotential functions. Due to large donor-to-donor variation in all donor groups, our data indicate that an individual's chronological age is not a reliable predictor of their MSC number or potency.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Osteoarthritis.

          Osteoarthritis (OA) is the most common joint disorder, is associated with an increasing socioeconomic impact owing to the ageing population and mainly affects the diarthrodial joints. Primary OA results from a combination of risk factors, with increasing age and obesity being the most prominent. The concept of the pathophysiology is still evolving, from being viewed as cartilage-limited to a multifactorial disease that affects the whole joint. An intricate relationship between local and systemic factors modulates its clinical and structural presentations, leading to a common final pathway of joint destruction. Pharmacological treatments are mostly related to relief of symptoms and there is no disease-modifying OA drug (that is, treatment that will reduce symptoms in addition to slowing or stopping the disease progression) yet approved by the regulatory agencies. Identifying phenotypes of patients will enable the detection of the disease in its early stages as well as distinguish individuals who are at higher risk of progression, which in turn could be used to guide clinical decision making and allow more effective and specific therapeutic interventions to be designed. This Primer is an update on the progress made in the field of OA epidemiology, quality of life, pathophysiological mechanisms, diagnosis, screening, prevention and disease management.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Bone regeneration: current concepts and future directions

            Bone regeneration is a complex, well-orchestrated physiological process of bone formation, which can be seen during normal fracture healing, and is involved in continuous remodelling throughout adult life. However, there are complex clinical conditions in which bone regeneration is required in large quantity, such as for skeletal reconstruction of large bone defects created by trauma, infection, tumour resection and skeletal abnormalities, or cases in which the regenerative process is compromised, including avascular necrosis, atrophic non-unions and osteoporosis. Currently, there is a plethora of different strategies to augment the impaired or 'insufficient' bone-regeneration process, including the 'gold standard' autologous bone graft, free fibula vascularised graft, allograft implantation, and use of growth factors, osteoconductive scaffolds, osteoprogenitor cells and distraction osteogenesis. Improved 'local' strategies in terms of tissue engineering and gene therapy, or even 'systemic' enhancement of bone repair, are under intense investigation, in an effort to overcome the limitations of the current methods, to produce bone-graft substitutes with biomechanical properties that are as identical to normal bone as possible, to accelerate the overall regeneration process, or even to address systemic conditions, such as skeletal disorders and osteoporosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion.

              Human marrow stromal cells (MSCs) can be isolated from bone marrow and differentiate into multiple tissues in vitro and in vivo. These properties make them promising tools in cell and gene therapy. The lack of a specific MSC marker and the low frequency of MSCs in bone marrow necessitate their isolation by in vitro expansion prior to clinical use. This may severely reduce MSC proliferative capacity to the point that the residual proliferative potential is insufficient to maintain long-term tissue regeneration upon reinfusion. In this study we determined the effect of in vitro expansion on the replicative capacity of MSCs by correlating their rate of telomere loss during in vitro expansion with their behavior in vivo. We report that even protocols that involve minimal expansion induce a rapid aging of MSCs, with losses equivalent to about half their total replicative lifespan.
                Bookmark

                Author and article information

                Contributors
                Journal
                Stem Cells Int
                Stem Cells Int
                SCI
                Stem Cells International
                Hindawi
                1687-966X
                1687-9678
                2019
                1 August 2019
                : 2019
                : 5197983
                Affiliations
                1Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
                2Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Egypt
                3Leeds Musculoskeletal Biomedical Research Centre, Chapel Allerton Hospital, Leeds, UK
                Author notes

                Academic Editor: Mustapha Najimi

                Author information
                https://orcid.org/0000-0003-1042-5910
                https://orcid.org/0000-0002-0580-4492
                https://orcid.org/0000-0003-3321-9087
                https://orcid.org/0000-0002-3969-7701
                https://orcid.org/0000-0001-9365-2283
                Article
                10.1155/2019/5197983
                6701348
                31467563
                17077198-42d7-4d28-8f3e-5c8cc21eed03
                Copyright © 2019 Payal Ganguly et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 April 2019
                : 28 June 2019
                : 14 July 2019
                Funding
                Funded by: AO Foundation
                Award ID: S-16-132E
                Funded by: Leeds Institute of Rheumatic and Musculoskeletal Medicine
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article