33
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Primary Human Placental Trophoblasts are Permissive for Zika Virus (ZIKV) Replication

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Zika virus (ZIKV) is an emerging mosquito-borne ( Aedes genus) arbovirus of the Flaviviridae family. Although ZIKV has been predominately associated with a mild or asymptomatic dengue-like disease, its appearance in the Americas has been accompanied by a multi-fold increase in reported incidence of fetal microcephaly and brain malformations. The source and mode of vertical transmission from mother to fetus is presumptively transplacental, although a causal link explaining the interval delay between maternal symptoms and observed fetal malformations following infection has been missing. In this study, we show that primary human placental trophoblasts from non-exposed donors ( n = 20) can be infected by primary passage ZIKV-FLR isolate, and uniquely allowed for ZIKV viral RNA replication when compared to dengue virus (DENV). Consistent with their being permissive for ZIKV infection, primary trophoblasts expressed multiple putative ZIKV cell entry receptors, and cellular function and differentiation were preserved. These findings suggest that ZIKV-FLR strain can replicate in human placental trophoblasts without host cell destruction, thereby serving as a likely permissive reservoir and portal of fetal transmission with risk of latent microcephaly and malformations.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae.

          Highly purified functional cytotrophoblasts have been prepared from human term placentae by adding a Percoll gradient centrifugation step to a standard trypsin-DNase dispersion method. The isolated mononuclear trophoblasts averaged 10 microns in diameter, with occasional cells measuring up to 20-30 microns. Viability was greater than 90%. Transmission electron microscopy revealed that the cells had fine structural features typical of trophoblasts. In contrast to syncytial trophoblasts of intact term placentae, these cells did not stain for hCG, human placental lactogen, pregnancy-specific beta 1-glycoprotein or low mol wt cytokeratins by immunoperoxidase methods. Endothelial cells, fibroblasts, or macrophages did not contaminate the purified cytotrophoblasts, as evidenced by the lack of immunoperoxidase staining with antibodies against vimentin or alpha 1-antichymotrypsin. The cells produced progesterone (1 ng/10(6) cells . 4 h), and progesterone synthesis was stimulated up to 8-fold in the presence of 25-hydroxycholesterol (20 micrograms/ml). They also produced estrogens (1360 pg/10(6) cells . 4 h) when supplied with androstenedione (1 ng/ml) as a precursor. When placed in culture, the cytotrophoblasts consistently formed aggregates, which subsequently transformed into syncytia within 24-48 h after plating. Time lapse cinematography revealed that this process occurred by cell fusion. The presumptive syncytial groups were proven to be true syncytia by microinjection of fluorescently labeled alpha-actinin, which diffused completely throughout the syncytial cytoplasm within 30 min. Immunoperoxidase staining of cultured trophoblasts between 3.5 and 72 h after plating revealed a progressive increase in cytoplasmic pregnancy-specific beta 1-glycoprotein, hCG, and human placental lactogen concomitant with increasing numbers of aggregates and syncytia. At all time points examined, occasional single cells positive for these markers were identified. RIA of the spent culture media for hCG revealed a significant increase in secreted hCG, paralleling the increase in hCG-positive cells and syncytia identified by immunoperoxidase methods. We conclude that human cytotrophoblasts differentiate in culture and fuse to form functional syncytiotrophoblasts.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Zika virus in Brazil and macular atrophy in a child with microcephaly.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human placental trophoblasts confer viral resistance to recipient cells.

              Placental trophoblasts form the interface between the fetal and maternal environments and serve to limit the maternal-fetal spread of viruses. Here we show that cultured primary human placental trophoblasts are highly resistant to infection by a number of viruses and, importantly, confer this resistance to nonplacental recipient cells by exosome-mediated delivery of specific microRNAs (miRNAs). We show that miRNA members of the chromosome 19 miRNA cluster, which are almost exclusively expressed in the human placenta, are packaged within trophoblast-derived exosomes and attenuate viral replication in recipient cells by the induction of autophagy. Together, our findings identify an unprecedented paracrine and/or systemic function of placental trophoblasts that uses exosome-mediated transfer of a unique set of placental-specific effector miRNAs to directly communicate with placental or maternal target cells and regulate their immunity to viral infections.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                27 January 2017
                2017
                : 7
                : 41389
                Affiliations
                [1 ]Departments of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine at Baylor College of Medicine & Texas Children’s Hospital , Houston, TX, USA
                [2 ]Department of Molecular & Human Genetics at Baylor College of Medicine , Houston, TX, USA
                [3 ]Department of Molecular & Cellular Biology at Baylor College of Medicine , Houston, TX, USA
                [4 ]National School for Tropical Medicine at Baylor College of Medicine , Houston, TX, USA
                [5 ]Department of Molecular Virology & Microbiology, Baylor College of Medicine , Houston, TX, USA
                [6 ]Integrative Molecular and Biological Science Program, Baylor College of Medicine , Houston, TX, USA
                [7 ]Department of Pathology & Immunology, Baylor College of Medicine & Texas Children’s Hospital , Houston, TX, USA.
                Author notes
                Article
                srep41389
                10.1038/srep41389
                5269613
                28128342
                170e814e-423f-4038-9927-dc8ebd75ceef
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 23 August 2016
                : 29 December 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article