12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Suppression of intrinsic roughness in encapsulated graphene

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Electric Field Effect in Atomically Thin Carbon Films

          We report a naturally-occurring two-dimensional material (graphene that can be viewed as a gigantic flat fullerene molecule, describe its electronic properties and demonstrate all-metallic field-effect transistor, which uniquely exhibits ballistic transport at submicron distances even at room temperature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The electronic properties of graphene

            This article reviews the basic theoretical aspects of graphene, a one atom thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. We show that the Dirac electrons behave in unusual ways in tunneling, confinement, and integer quantum Hall effect. We discuss the electronic properties of graphene stacks and show that they vary with stacking order and number of layers. Edge (surface) states in graphene are strongly dependent on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. We also discuss how different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Ultrahigh electron mobility in suspended graphene

              We have achieved mobilities in excess of 200,000 cm^2/Vs at electron densities of ~2*10^11 cm^-2 by suspending single layer graphene. Suspension ~150 nm above a Si/SiO_2 gate electrode and electrical contacts to the graphene was achieved by a combination of electron beam lithography and etching. The specimens were cleaned in situ by employing current-induced heating, directly resulting in a significant improvement of electrical transport. Concomitant with large mobility enhancement, the widths of the characteristic Dirac peaks are reduced by a factor of 10 compared to traditional, non-suspended devices. This advance should allow for accessing the intrinsic transport properties of graphene.
                Bookmark

                Author and article information

                Journal
                PRBMDO
                Physical Review B
                Phys. Rev. B
                American Physical Society (APS)
                2469-9950
                2469-9969
                July 2017
                July 5 2017
                : 96
                : 1
                Article
                10.1103/PhysRevB.96.014101
                1710f6e3-b970-441a-af8a-c55b70556972
                © 2017

                http://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article