66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Legionella Metaeffector Exploits Host Proteasome to Temporally Regulate Cognate Effector

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pathogen-associated secretion systems translocate numerous effector proteins into eukaryotic host cells to coordinate cellular processes important for infection. Spatiotemporal regulation is therefore important for modulating distinct activities of effectors at different stages of infection. Here we provide the first evidence of “metaeffector,” a designation for an effector protein that regulates the function of another effector within the host cell. Legionella LubX protein functions as an E3 ubiquitin ligase that hijacks the host proteasome to specifically target the bacterial effector protein SidH for degradation. Delayed delivery of LubX to the host cytoplasm leads to the shutdown of SidH within the host cells at later stages of infection. This demonstrates a sophisticated level of coevolution between eukaryotic cells and L. pneumophila involving an effector that functions as a key regulator to temporally coordinate the function of a cognate effector protein.

          Author Summary

          Many bacterial pathogens encode a large array of “effector proteins” that are essential for successful infection. By definition, effector proteins are synthesized in bacteria and transported from bacteria into host cells. Within host cells, effector proteins directly interact with host factors in order to modulate their functions. Effector expression, translocation or activity within host cells must be precisely regulated over infection stages. Here we demonstrate the first example of an effector protein which targets and regulates another effector within host cells: Legionella effector protein LubX targets another effector protein SidH to proteasome-mediated protein degradation in the host cells. Expression and delivery of these effector proteins are differentially regulated, which results in LubX-dependent SidH shutdown at late stages of infection. We propose the designation “metaeffector” for this class of bacterial effector protein: an effector that targets and regulates another effector within host cells. Future studies may reveal that metaeffectors which play critical roles in coordinating the functional expression of other effectors spatiotemporally are prevalent among bacterial pathogens.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Legionella and Legionnaires' disease: 25 years of investigation.

          There is still a low level of clinical awareness regarding Legionnaires' disease 25 years after it was first detected. The causative agents, legionellae, are freshwater bacteria with a fascinating ecology. These bacteria are intracellular pathogens of freshwater protozoa and utilize a similar mechanism to infect human phagocytic cells. There have been major advances in delineating the pathogenesis of legionellae through the identification of genes which allow the organism to bypass the endocytic pathways of both protozoan and human cells. Other bacteria that may share this novel infectious process are Coxiella burnetti and Brucella spp. More than 40 species and numerous serogroups of legionellae have been identified. Most diagnostic tests are directed at the species that causes most of the reported human cases of legionellosis, L. pneumophila serogroup 1. For this reason, information on the incidence of human respiratory disease attributable to other species and serogroups of legionellae is lacking. Improvements in diagnostic tests such as the urine antigen assay have inadvertently caused a decrease in the use of culture to detect infection, resulting in incomplete surveillance for legionellosis. Large, focal outbreaks of Legionnaires' disease continue to occur worldwide, and there is a critical need for surveillance for travel-related legionellosis in the United States. There is optimism that newly developed guidelines and water treatment practices can greatly reduce the incidence of this preventable illness.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The 26S proteasome: a molecular machine designed for controlled proteolysis.

            In eukaryotic cells, most proteins in the cytosol and nucleus are degraded via the ubiquitin-proteasome pathway. The 26S proteasome is a 2.5-MDa molecular machine built from approximately 31 different subunits, which catalyzes protein degradation. It contains a barrel-shaped proteolytic core complex (the 20S proteasome), capped at one or both ends by 19S regulatory complexes, which recognize ubiquitinated proteins. The regulatory complexes are also implicated in unfolding and translocation of ubiquitinated targets into the interior of the 20S complex, where they are degraded to oligopeptides. Structure, assembly and enzymatic mechanism of the 20S complex have been elucidated, but the functional organization of the 19S complex is less well understood. Most subunits of the 19S complex have been identified, however, specific functions have been assigned to only a few. A low-resolution structure of the 26S proteasome has been obtained by electron microscopy, but the precise arrangement of subunits in the 19S complex is unclear.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              S. typhimurium Encodes an Activator of Rho GTPases that Induces Membrane Ruffling and Nuclear Responses in Host Cells

              Cell, 93(5), 815-826
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                December 2010
                December 2010
                2 December 2010
                : 6
                : 12
                : e1001216
                Affiliations
                [1 ]Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
                [2 ]Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
                [3 ]National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
                The Rockefeller University, United States of America
                Author notes

                ¤: Current address: Department of Molecular Parasitology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan

                Conceived and designed the experiments: TK NS HK HN. Performed the experiments: TK NS HN. Analyzed the data: TK NS HN. Wrote the paper: TK NS HK HN.

                Article
                10-PLPA-RA-3228R2
                10.1371/journal.ppat.1001216
                2996335
                21151961
                171abcb2-9266-4dba-abc5-a7d3cd0c9508
                Kubori et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 28 April 2010
                : 28 October 2010
                Page count
                Pages: 8
                Categories
                Research Article
                Infectious Diseases/Bacterial Infections

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article