175
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sorghum is a food and feed cereal crop adapted to heat and drought and a staple for 500 million of the world’s poorest people. Its small diploid genome and phenotypic diversity make it an ideal C 4 grass model as a complement to C 3 rice. Here we present high coverage (16–45 × ) resequenced genomes of 44 sorghum lines representing the primary gene pool and spanning dimensions of geographic origin, end-use and taxonomic group. We also report the first resequenced genome of S. propinquum, identifying 8 M high-quality SNPs, 1.9 M indels and specific gene loss and gain events in S. bicolor. We observe strong racial structure and a complex domestication history involving at least two distinct domestication events. These assembled genomes enable the leveraging of existing cereal functional genomics data against the novel diversity available in sorghum, providing an unmatched resource for the genetic improvement of sorghum and other grass species.

          Abstract

          Sorghum is a drought-resistant food and feed cereal crop used by over half a billion of the world’s poorest people. Here the authors present high-coverage resequencing genome data of 44 sorghum lines of varying geographic and taxonomic origin, which include a number of sorghum wild relatives.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Sorghum bicolor genome and the diversification of grasses.

            Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the approximately 730-megabase Sorghum bicolor (L.) Moench genome, placing approximately 98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the approximately 75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization approximately 70 million years ago, most duplicated gene sets lost one member before the sorghum-rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum's drought tolerance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prioritizing climate change adaptation needs for food security in 2030.

              Investments aimed at improving agricultural adaptation to climate change inevitably favor some crops and regions over others. An analysis of climate risks for crops in 12 food-insecure regions was conducted to identify adaptation priorities, based on statistical crop models and climate projections for 2030 from 20 general circulation models. Results indicate South Asia and Southern Africa as two regions that, without sufficient adaptation measures, will likely suffer negative impacts on several crops that are important to large food-insecure human populations. We also find that uncertainties vary widely by crop, and therefore priorities will depend on the risk attitudes of investment institutions.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                27 August 2013
                : 4
                : 2320
                Affiliations
                [1 ]Department of Agriculture, Fisheries and Forestry Queensland (DAFFQ) , Warwick, Queensland 4370, Australia
                [2 ]BGI-Shenzhen , Shenzhen 518083, China
                [3 ]The University of Queensland, School of Agriculture and Food Sciences , Brisbane, Queensland 4072, Australia
                [4 ]Science and Engineering Faculty, Queensland University of Technology , Brisbane, Queensland 4000, Australia
                [5 ]DAFFQ, Cooper’s Plains , Brisbane, Queensland 4108, Australia
                [6 ]Queensland Alliance for Agriculture and Food Innovation, The University of Queensland , Warwick, Queensland 4370, Australia
                [7 ]Department of Biology, University of Copenhagen , DK-2200 Copenhagen, Denmark
                [8 ]The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , DK-2200 Copenhagen, Denmark
                [9 ]These authors contributed equally to the work
                Author notes
                Article
                ncomms3320
                10.1038/ncomms3320
                3759062
                23982223
                1735d0b2-afa5-42c5-923a-4d92f5047bdf
                Copyright © 2013, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

                History
                : 05 March 2013
                : 17 July 2013
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article