16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Infrared Imaging and Spectroscopy Beyond the Diffraction Limit

      Annual Review of Analytical Chemistry
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references138

          • Record: found
          • Abstract: not found
          • Article: not found

          Atomic Force Microscope

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Fano resonance in plasmonic nanostructures and metamaterials.

            Since its discovery, the asymmetric Fano resonance has been a characteristic feature of interacting quantum systems. The shape of this resonance is distinctively different from that of conventional symmetric resonance curves. Recently, the Fano resonance has been found in plasmonic nanoparticles, photonic crystals, and electromagnetic metamaterials. The steep dispersion of the Fano resonance profile promises applications in sensors, lasing, switching, and nonlinear and slow-light devices.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance.

              Metal nanoshells are a class of nanoparticles with tunable optical resonances. In this article, an application of this technology to thermal ablative therapy for cancer is described. By tuning the nanoshells to strongly absorb light in the near infrared, where optical transmission through tissue is optimal, a distribution of nanoshells at depth in tissue can be used to deliver a therapeutic dose of heat by using moderately low exposures of extracorporeally applied near-infrared (NIR) light. Human breast carcinoma cells incubated with nanoshells in vitro were found to have undergone photothermally induced morbidity on exposure to NIR light (820 nm, 35 W/cm2), as determined by using a fluorescent viability stain. Cells without nanoshells displayed no loss in viability after the same periods and conditions of NIR illumination. Likewise, in vivo studies under magnetic resonance guidance revealed that exposure to low doses of NIR light (820 nm, 4 W/cm2) in solid tumors treated with metal nanoshells reached average maximum temperatures capable of inducing irreversible tissue damage (DeltaT = 37.4 +/- 6.6 degrees C) within 4-6 min. Controls treated without nanoshells demonstrated significantly lower average temperatures on exposure to NIR light (DeltaT < 10 degrees C). These findings demonstrated good correlation with histological findings. Tissues heated above the thermal damage threshold displayed coagulation, cell shrinkage, and loss of nuclear staining, which are indicators of irreversible thermal damage. Control tissues appeared undamaged.
                Bookmark

                Author and article information

                Journal
                Annual Review of Analytical Chemistry
                Annual Rev. Anal. Chem.
                Annual Reviews
                1936-1327
                1936-1335
                July 22 2015
                July 22 2015
                : 8
                : 1
                : 101-126
                Article
                10.1146/annurev-anchem-071114-040435
                26001952
                1741cffa-16aa-4218-a2c0-15321d4d1bcd
                © 2015
                History

                Comments

                Comment on this article