57
views
0
recommends
+1 Recommend
1 collections
    3
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nanomedicine in pulmonary delivery

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The lung is an attractive target for drug delivery due to noninvasive administration via inhalation aerosols, avoidance of first-pass metabolism, direct delivery to the site of action for the treatment of respiratory diseases, and the availability of a huge surface area for local drug action and systemic absorption of drug. Colloidal carriers (ie, nanocarrier systems) in pulmonary drug delivery offer many advantages such as the potential to achieve relatively uniform distribution of drug dose among the alveoli, achievement of improved solubility of the drug from its own aqueous solubility, a sustained drug release which consequently reduces dosing frequency, improves patient compliance, decreases incidence of side effects, and the potential of drug internalization by cells. This review focuses on the current status and explores the potential of colloidal carriers (ie, nanocarrier systems) in pulmonary drug delivery with special attention to their pharmaceutical aspects. Manufacturing processes, in vitro/ in vivo evaluation methods, and regulatory/toxicity issues of nanomedicines in pulmonary delivery are also discussed.

          Most cited references227

          • Record: found
          • Abstract: found
          • Article: not found

          Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles

          Although humans have been exposed to airborne nanosized particles (NSPs; < 100 nm) throughout their evolutionary stages, such exposure has increased dramatically over the last century due to anthropogenic sources. The rapidly developing field of nanotechnology is likely to become yet another source through inhalation, ingestion, skin uptake, and injection of engineered nanomaterials. Information about safety and potential hazards is urgently needed. Results of older bio-kinetic studies with NSPs and newer epidemiologic and toxicologic studies with airborne ultrafine particles can be viewed as the basis for the expanding field of nanotoxicology, which can be defined as safety evaluation of engineered nanostructures and nanodevices. Collectively, some emerging concepts of nanotoxicology can be identified from the results of these studies. When inhaled, specific sizes of NSPs are efficiently deposited by diffusional mechanisms in all regions of the respiratory tract. The small size facilitates uptake into cells and transcytosis across epithelial and endothelial cells into the blood and lymph circulation to reach potentially sensitive target sites such as bone marrow, lymph nodes, spleen, and heart. Access to the central nervous system and ganglia via translocation along axons and dendrites of neurons has also been observed. NSPs penetrating the skin distribute via uptake into lymphatic channels. Endocytosis and biokinetics are largely dependent on NSP surface chemistry (coating) and in vivo surface modifications. The greater surface area per mass compared with larger-sized particles of the same chemistry renders NSPs more active biologically. This activity includes a potential for inflammatory and pro-oxidant, but also antioxidant, activity, which can explain early findings showing mixed results in terms of toxicity of NSPs to environmentally relevant species. Evidence of mitochondrial distribution and oxidative stress response after NSP endocytosis points to a need for basic research on their interactions with subcellular structures. Additional considerations for assessing safety of engineered NSPs include careful selections of appropriate and relevant doses/concentrations, the likelihood of increased effects in a compromised organism, and also the benefits of possible desirable effects. An interdisciplinary team approach (e.g., toxicology, materials science, medicine, molecular biology, and bioinformatics, to name a few) is mandatory for nanotoxicology research to arrive at an appropriate risk assessment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The effect of particle design on cellular internalization pathways.

            The interaction of particles with cells is known to be strongly influenced by particle size, but little is known about the interdependent role that size, shape, and surface chemistry have on cellular internalization and intracellular trafficking. We report on the internalization of specially designed, monodisperse hydrogel particles into HeLa cells as a function of size, shape, and surface charge. We employ a top-down particle fabrication technique called PRINT that is able to generate uniform populations of organic micro- and nanoparticles with complete control of size, shape, and surface chemistry. Evidence of particle internalization was obtained by using conventional biological techniques and transmission electron microscopy. These findings suggest that HeLa cells readily internalize nonspherical particles with dimensions as large as 3 mum by using several different mechanisms of endocytosis. Moreover, it was found that rod-like particles enjoy an appreciable advantage when it comes to internalization rates, reminiscent of the advantage that many rod-like bacteria have for internalization in nonphagocytic cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inhaling medicines: delivering drugs to the body through the lungs.

              Remarkably, with the exception of anaesthetic gases, the ancient human practice of inhaling substances into the lungs for systemic effect has only just begun to be adopted by modern medicine. Treatment of asthma by inhaled drugs began in earnest in the 1950s, and now such 'topical' or targeted treatment with inhaled drugs is considered for treating many other lung diseases. More recently, major advances have led to increasing interest in systemic delivery of drugs by inhalation. Small molecules can be delivered with very rapid action, low metabolism and high bioavailability; and macromolecules can be delivered without injections, as highlighted by the recent approval of the first inhaled insulin product. Here, we review these advances, and discuss aspects of lung physiology and formulation composition that influence the systemic delivery of inhaled therapeutics.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                2009
                2009
                29 December 2009
                : 4
                : 299-319
                Affiliations
                University of Kentucky, College of Pharmacy, Division of Pharmaceutical Sciences-Drug Development Division, Lexington, KY, USA
                Author notes
                Correspondence: Heidi M Mansour, Assistant Professor of Pharmaceutical, Sciences and Pharmaceutical Technology, University of Kentucky, College of Pharmacy, Division of Pharmaceutical, Sciences-Drug Development Division, 725, Rose Street, Lexington, KY 40536, USA, Tel +1 859 257 1571 Email heidi.mansour@ 123456uky.edu
                Article
                ijn-4-299
                10.2147/IJN.S4937
                2802043
                20054434
                17446144-fa36-488f-a6ef-dcbff98d7ba0
                © 2009 Mansour et al, publisher and licensee Dove Medical Press Ltd.

                This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.

                History
                : 4 December 2009
                Categories
                Review

                Molecular medicine
                liposome,pulmonary delivery,dendrimer,nanocarrier systems,polymeric nanoparticle,solid lipid nanoparticle,colloidal carriers,submicron emulsion

                Comments

                Comment on this article