27
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intratumoral chemotherapy for lung cancer: re-challenge current targeted therapies

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Strategies to enhance the already established doublet chemotherapy regimen for lung cancer have been investigated for more than 20 years. Initially, the concept was to administer chemotherapy drugs locally to the tumor site for efficient diffusion through passive transport within the tumor. Recent advances have enhanced the diffusion of pharmaceuticals through active transport by using pharmaceuticals designed to target the genome of tumors. In the present study, five patients with non-small cell lung cancer epidermal growth factor receptor (EGFR) negative stage IIIa–IV International Union Against Cancer 7 (UICC-7), and with Eastern Cooperative Oncology Group (ECOG) 2 scores were administered platinum-based doublet chemotherapy using combined intratumoral-regional and intravenous route of administration. Cisplatin analogues were injected at 0.5%–1% concentration within the tumor lesion and proven malignant lymph nodes according to pretreatment histological/cytological results and the concentration of systemic infusion was decreased to 70% of a standard protocol. This combined intravenous plus intratumoral-regional chemotherapy is used as a first line therapy on this short series of patients. To the best of our knowledge this is the first report of direct treatment of involved lymph nodes with cisplatin by endobronchial ultrasound drug delivery with a needle without any adverse effects. The initial overall survival and local response are suggestive of a better efficacy compared to established doublet cisplatin–based systemic chemotherapy in (higher) standard concentrations alone according to the UICC 7 database expected survival. An extensive search of the literature was performed to gather information of previously published literature of intratumoral chemo-drug administration and formulation for this treatment modality. Our study shows a favorable local response, more than a 50% reduction, for a massive tumor mass after administration of five sessions of intratumoral chemotherapy plus two cycles of low-dose intravenous chemotherapy according to our protocol. These encouraging results (even in very sick ECOG 2 patients with central obstructive non-small cell lung cancer having a worse prognosis and quality of life than a non-small cell lung cancer in ECOG 0 of the same tumor node metastasis [TNM]-stage without central obstruction) for a chemotherapy-only protocol that differs from conventional cisplatin-based doublet chemotherapy by the route, target site, and dose paves the way for broader applications of this technique. Finally, future perspectives of this treatment and pharmaceutical design for intratumoral administration are presented.

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo.

          We previously reported the development of epidermal growth factor receptor (EGFR)-targeted immunoliposomes that bind and internalize in tumor cells which overexpress EGFR and/or mutant EGFR variant III (EGFRvIII), enabling intracellular delivery of potent anticancer agents in vitro. We now describe in vivo proof-of-concept for this approach for the delivery of multiple anticancer drugs in EGFR-overexpressing tumor models. Anti-EGFR immunoliposomes were constructed modularly with Fab' fragments of cetuximab (IMC-C225), covalently linked to liposomes containing probes and/or anticancer drugs. Pharmacokinetic and biodistribution studies confirmed long circulation times (t(1/2) = 21 hours) and efficient accumulation in tumors (up to 15% ID/g) irrespective of the presence of the targeting ligand. Although total accumulations of anti-EGFR immunoliposomes and nontargeted liposomes in EGFR-overexpressing tumors were comparable, only immunoliposomes internalized extensively within tumor cells (92% of analyzed cells versus <5% for nontargeted liposomes), indicating different mechanisms of delivery at the cellular level. In vivo therapy studies in a series of xenograft models featuring overexpression of EGFR and/or EGFRvIII showed the superiority of immunoliposomal delivery of encapsulated drugs, which included doxorubicin, epirubicin, and vinorelbine. For each of these drugs, anti-EGFR immunoliposome delivery showed significant antitumor effects and was significantly superior to all other treatments, including the corresponding free or liposomal drug (P < 0.001-0.003). We conclude that anti-EGFR immunoliposomes provide efficient and targeted drug delivery of anticancer compounds and may represent a useful new treatment approach for tumors that overexpress the EGFR.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Phase I/IIa study of intratumoral/intracerebral or intravenous/intracerebral administration of Parvovirus H-1 (ParvOryx) in patients with progressive primary or recurrent glioblastoma multiforme: ParvOryx01 protocol

            Background The treatment of patients with malignant brain tumors remains a major oncological problem. The median survival of patients with glioblastoma multiforme (GBM), the most malignant type, is only 15 months after initial diagnosis and even less after tumor recurrence. Improvements of standard treatment including surgery and radio-chemotherapy have not lead to major improvements. Therefore, alternative therapeutics such as oncolytic viruses that specifically target and destroy cancer cells are under investigation. Preclinical data of oncolytic parvovirus H-1 (H-1PV) infection of glioma cells demonstrated strong cytotoxic and oncosuppressing effects, leading to a phase I/IIa trial of H-1PV in patients with recurrent GBM (ParvOryx01). ParvOryx01 is the first trial with a replication competent oncolytic virus in Germany. Methods ParvOryx01 is an open, non-controlled, two groups, intra-group dose escalation, single center, phase I/IIa trial. 18 patients with recurrent GBM will be treated in 2 groups of 9 patients each. Treatment group 1 will first receive H-1PV by intratumoral injection and second by administration into the walls of the tumor cavity during tumor resection. In treatment group 2 the virus will initially be injected intravenously and afterwards, identical to group 1, into the surrounding brain tissue during tumor removal. Main eligibility criteria are: age of 18 years, unifocal recurrent GBM, amenable to complete or subtotal resection. Dose escalation will be based on the Continual Reassessment Method. The primary objective of the trial is local and systemic safety and tolerability and to determine the maximum tolerated dose (MTD). Secondary objectives are proof of concept (PoC) and Progression-free Survival (PFS) up to 6 months. Discussion This is the first trial with H-1PV in patients with recurrent GBM. The risks for the participants appear well predictable and justified. Furthermore, ParvOryx01 will be the first assessment of combined intratumoral and intravenous application of an oncolytic virus. Due to its study design the trial will not only generate data on the local effect of H-1PV but it will also investigate the penetration of H-1PV into the tumor after systemic delivery and obtain safety data from systemic delivery possibly supporting clinical trials with H-1PV in other, non-CNS malignancies. Trial registration ClinicalTrials.gov Identifier: NCT01301430
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enhanced tumor treatment using biofunctional indocyanine green-containing nanostructure by intratumoral or intravenous injection.

              Indocyanine green (ICG) is a conventional dye that can be used in clinical near-infrared (NIR) imaging, and it is also an effective light absorber for laser-mediated photothermal therapy. However, applications of ICG were limited due to its fast degradation in aqueous media and quick clearance from the body. Herein, an ICG-containing nanostructure, ICG-PL-PEG, was developed for photothermal therapy, which was self-assembled by ICG and phospholipid-polyethylene glycol (PL-PEG). Our in vitro and in vivo experiments demonstrated that ICG-PL-PEG suspension was more efficient in producing a NIR-dependent temperature increase than ICG alone, due to the increase of ICG monomers from the addition of PL-PEG to match the central wavelength of the 808 nm laser. When conjugated with integrin α(v)β(3) monoclonal antibody (mAb), ICG-PL-PEG could be selectively internalized and retained in target tumor cells. Irradiation of an 808 nm laser after intravenous administration of ICG-PL-PEG-mAb resulted in tumor suppression in mice, while ICG alone had only limited effect. This is the first time an ICG-containing nanostructure has been used through systemic administration to achieve an efficient in vivo photothermal effect for cancer treatment. Therefore, ICG-PL-PEG could be used as a fluorescent marker as well as a light-absorber for imaging-guided photothermal therapy. All the components of ICG-PL-PEG have been approved for human use. Therefore, this unique ICG-containing nanostructure has great potential in clinical applications.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2013
                18 July 2013
                : 7
                : 571-583
                Affiliations
                [1 ]II Medical Clinic, Coburg Hospital, University of Wuerzburg, Coburg, Germany
                [2 ]Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
                [3 ]Department of Interventional Pneumology, Ruhrlandklinik, West German Lung Center, University Hospital, University Duisburg-Essen, Essen, Germany
                [4 ]Department of Diagnostic and Interventional Radiology, Goethe University of Frankfurt, Frankfurt, Germany
                [5 ]Biomaterials Science and Engineering, Department of Materials Science and Engineering, University of Florida, FL, USA
                [6 ]Department of Respiratory Diseases, Changhai Hospital/First Affiliated Hospital of the Second Military Medical University, Shanghai, People’s Republic of China
                [7 ]Bronchoscopy and Interventional Pulmonology, Pulmonary and Critical Care Medicine, Henry Ford Hospital, Wayne State University, School of Medicine, MI, USA
                [8 ]Pulmonary and Critical Care Medicine, Interventional Pulmonology, National Naval Medical Center, Walter Reed Army Medical Center, Bethesda, MD, USA
                [9 ]Pulmonary Medicine, University of Nevada School of Medicine, National Supercomputing Center for Energy and the Environment University of Nevada, Las Vegas, NV, USA
                [10 ]Interventional Drug Delivery Systems and Strategies (ID2S2), Medical Cryogenics, Jupiter, FL, USA
                [11 ]Pulmonary Department, Cerrahpasa Medical Faculty, University of Istanbul, Istanbul, Turkey
                Author notes
                Correspondence: Paul Zarogoulidis, Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece, Tel +30 697 727 1974, Fax +30 231 099 2433, Email pzarog@ 123456hotmail.com
                Article
                dddt-7-571
                10.2147/DDDT.S46393
                3718837
                23898222
                175180f0-5b1b-4977-bca0-41e814612c47
                © 2013 Hohenforst-Schmidt et al, publisher and licensee Dove Medical Press Ltd

                This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.

                History
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                cisplatin,lymph nodes,chemotherapy,intratumoral,lung cancer
                Pharmacology & Pharmaceutical medicine
                cisplatin, lymph nodes, chemotherapy, intratumoral, lung cancer

                Comments

                Comment on this article