30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Electrical Detection of Spin Transport in Lateral Ferromagnet-Semiconductor Devices

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A longstanding goal of research in semiconductor spintronics is the ability to inject, modulate, and detect electron spin in a single device. A simple prototype consists of a lateral semiconductor channel with two ferromagnetic contacts, one of which serves as a source of spin-polarized electrons and the other as a detector. Based on work in analogous metallic systems, two important criteria have emerged for demonstrating electrical detection of spin transport. The first is the measurement of a non-equilibrium spin population using a non-local ferromagnetic detector through which no charge current flows. The potential at the detection electrode should be sensitive to the relative magnetizations of the detector and the source electrodes, a property referred to as the spin-valve effect. A second and more rigorous test is the existence of a Hanle effect, which is the modulation and suppression of the spin valve signal due to precession and dephasing in a transverse magnetic field. Here we report on the observation of both the spin valve and Hanle effects in lateral devices consisting of epitaxial Fe Schottky tunnel barrier contacts on an n-doped GaAs channel. The dependence on transverse magnetic field, temperature, and contact separation are in good agreement with a model incorporating spin drift and diffusion. Spin transport is detected for both directions of current flow through the source electrode. The sign of the electrical detection signal is found to vary with the injection current and is correlated with the spin polarization in the GaAs channel determined by optical measurements. These results therefore demonstrate a fully electrical scheme for spin injection, transport, and detection in a lateral semiconductor device.

          Related collections

          Author and article information

          Journal
          31 December 2006
          Article
          10.1038/nphys543
          cond-mat/0701021
          1756e462-fbcf-49a4-9ca5-77aeb6cb3cd5
          History
          Custom metadata
          Nature Physics 3, 197 (2007)
          Single PDF file with 4 Figures + supplementary information; submitted to Nature Physics 11/06
          cond-mat.mtrl-sci cond-mat.mes-hall

          Comments

          Comment on this article