24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      C-terminal kinesin motor KIFC1 participates in facilitating proper cell division of human seminoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          C-terminus kinesin motor KIFC1 is known for centrosome clustering in cancer cells with supernumerary centrosomes. KIFC1 crosslinks and glides on microtubules (MT) to assist normal bipolar spindle formation to avoid multi-polar cell division, which might be fatal. Testis cancer is the most common human cancer among young men. However, the gene expression profiles of testis cancer is still not complete and the expression of the C-terminus kinesin motor KIFC1 in testis cancer has not yet been examined. We found that KIFC1 is enriched in seminoma tissues in both mRNA level and protein level, and is specifically enriched in the cells that divide actively. Cell experiments showed that KIFC1 may be essential in cell division, but not essential in metastasis. Based on subcellular immuno-florescent staining results, we also described the localization of KIFC1 during cell cycle. By expressing ΔC-FLAG peptide in the cells, we found that the tail domain of KIFC1 might be essential for the dynamic disassociation of KIFC1, and the motor domain of KIFC1 might be essential for the degradation of KIFC1. Our work provides a new perspective for seminoma research.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Kinesins and cancer.

          Kinesins are a family of molecular motors that travel unidirectionally along microtubule tracks to fulfil their many roles in intracellular transport or cell division. Over the past few years kinesins that are involved in mitosis have emerged as potential targets for cancer drug development. Several compounds that inhibit two mitotic kinesins (EG5 (also known as KIF11) and centromere-associated protein E (CENPE)) have entered Phase I and II clinical trials either as monotherapies or in combination with other drugs. Additional mitotic kinesins are currently being validated as drug targets, raising the possibility that the range of kinesin-based drug targets may expand in the future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cubism and the cell cycle: the many faces of the APC/C.

            One does not often look to analytic cubism for insights into the control of the cell cycle, but Pablo Picasso beautifully encapsulated the fundamentals when he said that "every act of creation is, first of all, an act of destruction". The rapid destruction of specific cell cycle regulators at just the right moment in the cell cycle ensures that daughter cells receive an equal and identical set of chromosomes from their mother and that DNA replication always follows mitosis. Remarkably, one protein complex is responsible for this surgical precision, the APC/C (anaphase-promoting complex, also known as the cyclosome). The APC/C is tightly regulated by its co-activators and by the spindle assembly checkpoint.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Kinesin-Related Protein, Hset, Opposes the Activity of Eg5 and Cross-Links Microtubules in the Mammalian Mitotic Spindle

              We have prepared antibodies specific for HSET, the human homologue of the KAR3 family of minus end-directed motors. Immuno-EM with these antibodies indicates that HSET frequently localizes between microtubules within the mammalian metaphase spindle consistent with a microtubule cross-linking function. Microinjection experiments show that HSET activity is essential for meiotic spindle organization in murine oocytes and taxol-induced aster assembly in cultured cells. However, inhibition of HSET did not affect mitotic spindle architecture or function in cultured cells, indicating that centrosomes mask the role of HSET during mitosis. We also show that (acentrosomal) microtubule asters fail to assemble in vitro without HSET activity, but simultaneous inhibition of HSET and Eg5, a plus end-directed motor, redresses the balance of forces acting on microtubules and restores aster organization. In vivo, centrosomes fail to separate and monopolar spindles assemble without Eg5 activity. Simultaneous inhibition of HSET and Eg5 restores centrosome separation and, in some cases, bipolar spindle formation. Thus, through microtubule cross-linking and oppositely oriented motor activity, HSET and Eg5 participate in spindle assembly and promote spindle bipolarity, although the activity of HSET is not essential for spindle assembly and function in cultured cells because of centrosomes.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                22 September 2017
                24 May 2017
                : 8
                : 37
                : 61373-61384
                Affiliations
                1 The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
                2 The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
                Author notes
                Correspondence to: Wan-Xi Yang, wxyang@ 123456spermlab.org
                [*]

                These authors have contributed equally to this work

                Article
                18139
                10.18632/oncotarget.18139
                5617430
                28977870
                17581ee4-f705-4061-8aea-ecef7463ea8a
                Copyright: © 2017 Xiao et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 31 March 2017
                : 27 April 2017
                Categories
                Research Paper

                Oncology & Radiotherapy
                kifc1,kinesin-14,seminoma,testis cancer,cell division
                Oncology & Radiotherapy
                kifc1, kinesin-14, seminoma, testis cancer, cell division

                Comments

                Comment on this article