46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gallstone Disease and Microbiome

      review-article
      , *
      Microorganisms
      MDPI
      gallstone disease, microbiota, gut, bile acids, oral cavity, bile ducts, cholecystectomy

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gallstone disease (GSD) has, for many years, remained a high-cost, socially significant public health problem. Over the past decade, a number of studies have been carried out—both in humans and in animal models—confirming the role of the microbiota in various sections of the gastrointestinal tract as a new link in the etiopathogenesis of GSD. The microbiome of bile correlates with the bacterial composition of saliva, and the microbiome of the biliary tract has a high similarity with the microbiota of the duodenum. Pathogenic microflora of the oral cavity, through mechanisms of immunomodulation, can affect the motility of the gallbladder and the expression of mucin genes ( MUC1, Muc3, MUC4), and represent one of the promoters of stone formation in the gallbladder. The presence of H. pylori infection contributes to the formation of gallstones and affects the occurrence of complications of GSD, including acute and chronic cholecystitis, cholangitis, pancreatitis. Intestinal bacteria ( Clostridium, Bifidobacterium, Peptostreptococcus, Bacteroides, Eubacterium, and Escherichia coli) participating in the oxidation and epimerization of bile acids can disrupt enterohepatic circulation and lead to the formation of gallstones. At the same time, cholecystectomy due to GSD leads to the further transformation of the composition of the microbiota in various parts of the gastrointestinal tract, increasing the risk of developing stomach cancer and colorectal cancer. Further research is required to determine the possibility of using the evaluation of the composition of the microbiota of the gastrointestinal and biliary tracts as an early diagnostic marker of various gastroenterological diseases.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Defining the healthy "core microbiome" of oral microbial communities

          Background Most studies examining the commensal human oral microbiome are focused on disease or are limited in methodology. In order to diagnose and treat diseases at an early and reversible stage an in-depth definition of health is indispensible. The aim of this study therefore was to define the healthy oral microbiome using recent advances in sequencing technology (454 pyrosequencing). Results We sampled and sequenced microbiomes from several intraoral niches (dental surfaces, cheek, hard palate, tongue and saliva) in three healthy individuals. Within an individual oral cavity, we found over 3600 unique sequences, over 500 different OTUs or "species-level" phylotypes (sequences that clustered at 3% genetic difference) and 88 - 104 higher taxa (genus or more inclusive taxon). The predominant taxa belonged to Firmicutes (genus Streptococcus, family Veillonellaceae, genus Granulicatella), Proteobacteria (genus Neisseria, Haemophilus), Actinobacteria (genus Corynebacterium, Rothia, Actinomyces), Bacteroidetes (genus Prevotella, Capnocytophaga, Porphyromonas) and Fusobacteria (genus Fusobacterium). Each individual sample harboured on average 266 "species-level" phylotypes (SD 67; range 123 - 326) with cheek samples being the least diverse and the dental samples from approximal surfaces showing the highest diversity. Principal component analysis discriminated the profiles of the samples originating from shedding surfaces (mucosa of tongue, cheek and palate) from the samples that were obtained from solid surfaces (teeth). There was a large overlap in the higher taxa, "species-level" phylotypes and unique sequences among the three microbiomes: 84% of the higher taxa, 75% of the OTUs and 65% of the unique sequences were present in at least two of the three microbiomes. The three individuals shared 1660 of 6315 unique sequences. These 1660 sequences (the "core microbiome") contributed 66% of the reads. The overlapping OTUs contributed to 94% of the reads, while nearly all reads (99.8%) belonged to the shared higher taxa. Conclusions We obtained the first insight into the diversity and uniqueness of individual oral microbiomes at a resolution of next-generation sequencing. We showed that a major proportion of bacterial sequences of unrelated healthy individuals is identical, supporting the concept of a core microbiome at health.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Oral microbiomes: more and more importance in oral cavity and whole body

            Microbes appear in every corner of human life, and microbes affect every aspect of human life. The human oral cavity contains a number of different habitats. Synergy and interaction of variable oral microorganisms help human body against invasion of undesirable stimulation outside. However, imbalance of microbial flora contributes to oral diseases and systemic diseases. Oral microbiomes play an important role in the human microbial community and human health. The use of recently developed molecular methods has greatly expanded our knowledge of the composition and function of the oral microbiome in health and disease. Studies in oral microbiomes and their interactions with microbiomes in variable body sites and variable health condition are critical in our cognition of our body and how to make effect on human health improvement.
              • Record: found
              • Abstract: not found
              • Article: not found

              Insights into the human oral microbiome

                Author and article information

                Journal
                Microorganisms
                Microorganisms
                microorganisms
                Microorganisms
                MDPI
                2076-2607
                02 June 2020
                June 2020
                : 8
                : 6
                : 835
                Affiliations
                Laboratory of Gastroenterology, Research Institute of Internal and Preventive Medicine-Branch of The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirsk 630089, Russia; igrigorieva@ 123456ngs.ru
                Author notes
                [* ]Correspondence: tarom_75@ 123456mail.ru ; Tel.: +7-383-3730986
                Author information
                https://orcid.org/0000-0001-8514-2304
                Article
                microorganisms-08-00835
                10.3390/microorganisms8060835
                7356158
                32498344
                175971e3-0806-4963-8d91-fea6d38cd82e
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 March 2020
                : 30 May 2020
                Categories
                Review

                gallstone disease,microbiota,gut,bile acids,oral cavity,bile ducts,cholecystectomy

                Comments

                Comment on this article

                Related Documents Log