16
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Small angle x-ray scattering with edge-illumination

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sensitivity to sub-pixel sample features has been demonstrated as a valuable capability of phase contrast x-ray imaging. Here, we report on a method to obtain angular-resolved small angle x-ray scattering distributions with edge-illumination- based imaging utilizing incoherent illumination from an x-ray tube. Our approach provides both the three established image modalities (absorption, differential phase and scatter strength), plus a number of additional contrasts related to unresolved sample features. The complementarity of these contrasts is experimentally validated by using different materials in powder form. As a significant application example we show that the extended complementary contrasts could allow the diagnosis of pulmonary emphysema in a murine model. In support of this, we demonstrate that the properties of the retrieved scattering distributions are consistent with the expectation of increased feature sizes related to pulmonary emphysema. Combined with the simplicity of implementation of edge-illumination, these findings suggest a high potential for exploiting extended sub-pixel contrasts in the diagnosis of lung diseases and beyond.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          50-year trends in smoking-related mortality in the United States.

          The disease risks from cigarette smoking increased in the United States over most of the 20th century, first among male smokers and later among female smokers. Whether these risks have continued to increase during the past 20 years is unclear. We measured temporal trends in mortality across three time periods (1959-1965, 1982-1988, and 2000-2010), comparing absolute and relative risks according to sex and self-reported smoking status in two historical cohort studies and in five pooled contemporary cohort studies, among participants who became 55 years of age or older during follow-up. For women who were current smokers, as compared with women who had never smoked, the relative risks of death from lung cancer were 2.73, 12.65, and 25.66 in the 1960s, 1980s, and contemporary cohorts, respectively; corresponding relative risks for male current smokers, as compared with men who had never smoked, were 12.22, 23.81, and 24.97. In the contemporary cohorts, male and female current smokers also had similar relative risks for death from chronic obstructive pulmonary disease (COPD) (25.61 for men and 22.35 for women), ischemic heart disease (2.50 for men and 2.86 for women), any type of stroke (1.92 for men and 2.10 for women), and all causes combined (2.80 for men and 2.76 for women). Mortality from COPD among male smokers continued to increase in the contemporary cohorts in nearly all the age groups represented in the study and within each stratum of duration and intensity of smoking. Among men 55 to 74 years of age and women 60 to 74 years of age, all-cause mortality was at least three times as high among current smokers as among those who had never smoked. Smoking cessation at any age dramatically reduced death rates. The risk of death from cigarette smoking continues to increase among women and the increased risks are now nearly identical for men and women, as compared with persons who have never smoked. Among men, the risks associated with smoking have plateaued at the high levels seen in the 1980s, except for a continuing, unexplained increase in mortality from COPD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hard-X-ray dark-field imaging using a grating interferometer.

            Imaging with visible light today uses numerous contrast mechanisms, including bright- and dark-field contrast, phase-contrast schemes and confocal and fluorescence-based methods. X-ray imaging, on the other hand, has only recently seen the development of an analogous variety of contrast modalities. Although X-ray phase-contrast imaging could successfully be implemented at a relatively early stage with several techniques, dark-field imaging, or more generally scattering-based imaging, with hard X-rays and good signal-to-noise ratio, in practice still remains a challenging task even at highly brilliant synchrotron sources. In this letter, we report a new approach on the basis of a grating interferometer that can efficiently yield dark-field scatter images of high quality, even with conventional X-ray tube sources. Because the image contrast is formed through the mechanism of small-angle scattering, it provides complementary and otherwise inaccessible structural information about the specimen at the micrometre and submicrometre length scale. Our approach is fully compatible with conventional transmission radiography and a recently developed hard-X-ray phase-contrast imaging scheme. Applications to X-ray medical imaging, industrial non-destructive testing and security screening are discussed.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Bayesian-Based Iterative Method of Image Restoration*

                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                05 August 2016
                2016
                : 6
                : 30940
                Affiliations
                [1 ]Department of Medical Physics and Bioengineering, University College London , Gower Street, WC1E 6BT London, United Kingdom
                [2 ]Institute of Anatomy, University of Berne , Baltzerstrasse 2, 3012 Bern, Switzerland
                [3 ]Theodor Kocher Institute, University of Berne , Freiestrasse 1, 3012 Bern, Switzerland
                Author notes
                Article
                srep30940
                10.1038/srep30940
                4974648
                27491917
                175abb6b-c48b-43ff-bb24-dfa18d38fc06
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 14 April 2016
                : 11 July 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article