6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Self‐Healable Multifunctional Electronic Tattoos Based on Silk and Graphene

      1 , 2 , 1 , 1 , 1 , 1

      Advanced Functional Materials

      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 55

          • Record: found
          • Abstract: found
          • Article: not found

          Electronic transport properties of individual chemically reduced graphene oxide sheets.

          Individual graphene oxide sheets subjected to chemical reduction were electrically characterized as a function of temperature and external electric fields. The fully reduced monolayers exhibited conductivities ranging between 0.05 and 2 S/cm and field effect mobilities of 2-200 cm2/Vs at room temperature. Temperature-dependent electrical measurements and Raman spectroscopic investigations suggest that charge transport occurs via variable range hopping between intact graphene islands with sizes on the order of several nanometers. Furthermore, the comparative study of multilayered sheets revealed that the conductivity of the undermost layer is reduced by a factor of more than 2 as a consequence of the interaction with the Si/SiO2 substrate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications.

            Pressure sensitivity and mechanical self-healing are two vital functions of the human skin. A flexible and electrically conducting material that can sense mechanical forces and yet be able to self-heal repeatably can be of use in emerging fields such as soft robotics and biomimetic prostheses, but combining all these properties together remains a challenging task. Here, we describe a composite material composed of a supramolecular organic polymer with embedded nickel nanostructured microparticles, which shows mechanical and electrical self-healing properties at ambient conditions. We also show that our material is pressure- and flexion-sensitive, and therefore suitable for electronic skin applications. The electrical conductivity can be tuned by varying the amount of nickel particles and can reach values as high as 40 S cm(-1). On rupture, the initial conductivity is repeatably restored with ∼90% efficiency after 15 s healing time, and the mechanical properties are completely restored after ∼10 min. The composite resistance varies inversely with applied flexion and tactile forces. These results demonstrate that natural skin's repeatable self-healing capability can be mimicked in conductive and piezoresistive materials, thus potentially expanding the scope of applications of current electronic skin systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A physically transient form of silicon electronics.

              A remarkable feature of modern silicon electronics is its ability to remain physically invariant, almost indefinitely for practical purposes. Although this characteristic is a hallmark of applications of integrated circuits that exist today, there might be opportunities for systems that offer the opposite behavior, such as implantable devices that function for medically useful time frames but then completely disappear via resorption by the body. We report a set of materials, manufacturing schemes, device components, and theoretical design tools for a silicon-based complementary metal oxide semiconductor (CMOS) technology that has this type of transient behavior, together with integrated sensors, actuators, power supply systems, and wireless control strategies. An implantable transient device that acts as a programmable nonantibiotic bacteriocide provides a system-level example.
                Bookmark

                Author and article information

                Journal
                Advanced Functional Materials
                Adv. Funct. Mater.
                Wiley
                1616-301X
                1616-3028
                March 03 2019
                April 2019
                February 25 2019
                April 2019
                : 29
                : 16
                : 1808695
                Affiliations
                [1 ]Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of EducationDepartment of Chemistry and Center for Nano and Micro MechanicsTsinghua University Beijing 100084 P. R. China
                [2 ]School of Physical Science and TechnologyShanghaiTech University Shanghai 201800 P. R. China
                Article
                10.1002/adfm.201808695
                © 2019

                Comments

                Comment on this article