40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genome-wide association study identifies loci affecting blood copper, selenium and zinc.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genetic variation affecting absorption, distribution or excretion of essential trace elements may lead to health effects related to sub-clinical deficiency. We have tested for allelic effects of single-nucleotide polymorphisms (SNPs) on blood copper, selenium and zinc in a genome-wide association study using two adult cohorts from Australia and the UK. Participants were recruited in Australia from twins and their families and in the UK from pregnant women. We measured erythrocyte Cu, Se and Zn (Australian samples) or whole blood Se (UK samples) using inductively coupled plasma mass spectrometry. Genotyping was performed with Illumina chips and > 2.5 m SNPs were imputed from HapMap data. Genome-wide significant associations were found for each element. For Cu, there were two loci on chromosome 1 (most significant SNPs rs1175550, P = 5.03 × 10(-10), and rs2769264, P = 2.63 × 10(-20)); for Se, a locus on chromosome 5 was significant in both cohorts (combined P = 9.40 × 10(-28) at rs921943); and for Zn three loci on chromosomes 8, 15 and X showed significant results (rs1532423, P = 6.40 × 10(-12); rs2120019, P = 1.55 × 10(-18); and rs4826508, P = 1.40 × 10(-12), respectively). The Se locus covers three genes involved in metabolism of sulphur-containing amino acids and potentially of the analogous Se compounds; the chromosome 8 locus for Zn contains multiple genes for the Zn-containing enzyme carbonic anhydrase. Where potentially relevant genes were identified, they relate to metabolism of the element (Se) or to the presence at high concentration of a metal-containing protein (Cu).

          Related collections

          Author and article information

          Journal
          Hum. Mol. Genet.
          Human molecular genetics
          1460-2083
          0964-6906
          Oct 1 2013
          : 22
          : 19
          Affiliations
          [1 ] The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors and that the last two authors should be regarded as joint Last Authors.
          Article
          ddt239
          10.1093/hmg/ddt239
          3766178
          23720494
          1762cda5-e797-4593-90ff-39a90a9b6062
          History

          Comments

          Comment on this article