0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Renal filtration and catabolism of complement protein D.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Complement protein D, a serine protease participating in the formation of the C3 convertase of the alternative complement pathway, has the lowest molecular weight (23,750) and serum concentration of all complement proteins. In normal serum, D is the rate-limiting protease of the alternative pathway of complement activation. We report that the serum concentrations of D in 20 patients with chronic renal failure (mean +/- S.D., 0.42 +/- 0.28 mg per deciliter) and in 16 patients on long-term dialysis (1.53 +/- 0.39 mg per deciliter) were significantly higher (P less than 0.001) than in 22 healthy adults (0.18 +/- 0.04 mg per deciliter). In chronic renal failure the serum concentration of D correlated with that of creatinine (r = 0.75, P less than 0.001). The serum concentrations of D found in patients with renal failure reached and in some cases exceeded those at which the protease is no longer rate-limiting. Thus, enhanced activity of the alternative pathway of complement should be expected in patients with advanced renal failure. Urinary D was undetectable (less than 0.2 micrograms per deciliter) in 17 normal adults and either undetectable or below the concentration expected from the degree of proteinuria in 10 patients with nephrotic syndrome. However, in a patient with Fanconi's syndrome the urinary concentration of D (1.3 mg per deciliter) was an order of magnitude higher than the serum concentration, representing 0.5 per cent of the total protein. The urinary D in this patient had normal hemolytic activity, antigenicity, and size. These results indicate that D is filtered through the glomerular membrane and is probably catabolized in the proximal renal tubules.

          Related collections

          Author and article information

          Journal
          N. Engl. J. Med.
          The New England journal of medicine
          New England Journal of Medicine (NEJM/MMS)
          0028-4793
          0028-4793
          Feb 14 1985
          : 312
          : 7
          Article
          10.1056/NEJM198502143120702
          3844050
          17638fc0-4d55-4896-898b-fd129abc6bff
          History

          Comments

          Comment on this article