Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Direct Current Electric Field Stimulates Nitric Oxide Production and Promotes NO-Dependent Angiogenesis: Involvement of the PI3K/Akt Signaling Pathway

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Electric fields (EFs) promote angiogenesis in vitro and in vivo. These results indicate the feasibility of the application of EFs to modulate angiogenesis. Nitric oxide (NO) derived from endothelial nitric oxide synthase (eNOS) is an important regulator of angiogenesis. However, the role of direct current EFs in eNOS activity and expression in association with angiogenesis of endothelial cells has not been investigated. In the present study, we stimulated human umbilical vein endothelial cells (HUVECs) with EFs and evaluated the activity and expression of eNOS. EFs induced significant phosphorylation of eNOS, upregulation of the expression of eNOS protein, and an increase in NO production from HUVECs. L-NAME, a specific inhibitor of eNOS, abolished EF-induced HUVEC angiogenesis. EFs stimulated Akt activation. Inhibition of PI3K activity inhibited EF-mediated Akt and eNOS activation and inhibited NO production in the endothelial cells. Moreover, EFs stimulated HUVEC proliferation and enhanced the S phase cell population of the cell cycle. We conclude that EFs stimulate eNOS activation and NO production via a PI3K/Akt-dependent pathway. Thus, activation of eNOS appears to be one of the key signaling pathways necessary for EF-mediated angiogenesis. These novel findings suggest that NO signaling may have an important role in EF-mediated endothelial cell function.

          Related collections

          Most cited references 38

          • Record: found
          • Abstract: found
          • Article: not found

          Angiogenesis in life, disease and medicine.

          The growth of blood vessels (a process known as angiogenesis) is essential for organ growth and repair. An imbalance in this process contributes to numerous malignant, inflammatory, ischaemic, infectious and immune disorders. Recently, the first anti-angiogenic agents have been approved for the treatment of cancer and blindness. Angiogenesis research will probably change the face of medicine in the next decades, with more than 500 million people worldwide predicted to benefit from pro- or anti-angiogenesis treatments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nitric oxide synthase modulates angiogenesis in response to tissue ischemia.

            We tested the hypothesis that endothelial nitric oxide synthase (eNOS) modulates angiogenesis in two animal models in which therapeutic angiogenesis has been characterized as a compensatory response to tissue ischemia. We first administered L-arginine, previously shown to augment endogenous production of NO, to normal rabbits with operatively induced hindlimb ischemia. Angiogenesis in the ischemic hindlimb was significantly improved by dietary supplementation with L-arginine, compared to placebo-treated controls; angiographically evident vascularity in the ischemic limb, hemodynamic indices of limb perfusion, capillary density, and vasomotor reactivity in the collateral vessel-dependent ischemic limb were all improved by oral L-arginine supplementation. A murine model of operatively induced hindlimb ischemia was used to investigate the impact of targeted disruption of the gene encoding for ENOS on angiogenesis. Angiogenesis in the ischemic hindlimb was significantly impaired in eNOS-/- mice versus wild-type controls evaluated by either laser Doppler flow analysis or capillary density measurement. Impaired angiogenesis in eNOS-/- mice was not improved by administration of vascular endothelial growth factor (VEGF), suggesting that eNOS acts downstream from VEGF. Thus, (a) eNOS is a downstream mediator for in vivo angiogenesis, and (b) promoting eNOS activity by L-arginine supplementation accelerates in vivo angiogenesis. These findings suggest that defective endothelial NO synthesis may limit angiogenesis in patients with endothelial dysfunction related to atherosclerosis, and that oral L-arginine supplementation constitutes a potential therapeutic strategy for accelerating angiogenesis in patients with advanced vascular obstruction.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Nitric oxide signaling in the central nervous system.

                Bookmark

                Author and article information

                Journal
                JVR
                J Vasc Res
                10.1159/issn.1018-1172
                Journal of Vascular Research
                S. Karger AG
                1018-1172
                1423-0135
                2020
                July 2020
                06 May 2020
                : 57
                : 4
                : 195-205
                Affiliations
                aLaboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
                bDepartment of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
                cDivision of Peptides Related to Human Disease, West China Hospital, Sichuan University, Chengdu, China
                dDepartment of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
                Author notes
                *Huai Bai, MD, PhD, Laboratory of Genetic Disease and Perinatal Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 (PR China), baihuai60@aliyun.com
                Article
                506517 J Vasc Res 2020;57:195–205
                10.1159/000506517
                32375152
                © 2020 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 9, Pages: 11
                Categories
                Research Article

                Comments

                Comment on this article