32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      6-Mercaptopurine attenuates tumor necrosis factor-α production in microglia through Nur77-mediated transrepression and PI3K/Akt/mTOR signaling-mediated translational regulation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The pathogenesis of several neurodegenerative diseases often involves the microglial activation and associated inflammatory processes. Activated microglia release pro-inflammatory factors that may be neurotoxic. 6-Mercaptopurine (6-MP) is a well-established immunosuppressive drug. Common understanding of their immunosuppressive properties is largely limited to peripheral immune cells. However, the effect of 6-MP in the central nervous system, especially in microglia in the context of neuroinflammation is, as yet, unclear. Tumor necrosis factor-α (TNF-α) is a key cytokine of the immune system that initiates and promotes neuroinflammation. The present study aimed to investigate the effect of 6-MP on TNF-α production by microglia to discern the molecular mechanisms of this modulation.

          Methods

          Lipopolysaccharide (LPS) was used to induce an inflammatory response in cultured primary microglia or murine BV-2 microglial cells. Released TNF-α was measured by enzyme-linked immunosorbent assay (ELISA). Gene expression was determined by real-time reverse transcription polymerase chain reaction (RT-PCR). Signaling molecules were analyzed by western blotting, and activation of NF-κB was measured by ELISA-based DNA binding analysis and luciferase reporter assay. Chromatin immunoprecipitation (ChIP) analysis was performed to examine NF-κB p65 and coactivator p300 enrichments and histone modifications at the endogenous TNF-α promoter.

          Results

          Treatment of LPS-activated microglia with 6-MP significantly attenuated TNF-α production. In 6-MP pretreated microglia, LPS-induced MAPK signaling, IκB-α degradation, NF-κB p65 nuclear translocation, and in vitro p65 DNA binding activity were not impaired. However, 6-MP suppressed transactivation activity of NF-κB and TNF-α promoter by inhibiting phosphorylation and acetylation of p65 on Ser276 and Lys310, respectively. ChIP analyses revealed that 6-MP dampened LPS-induced histone H3 acetylation of chromatin surrounding the TNF-α promoter, ultimately leading to a decrease in p65/coactivator-mediated transcription of TNF-α gene. Furthermore, 6-MP enhanced orphan nuclear receptor Nur77 expression. Using RNA interference approach, we further demonstrated that Nur77 upregulation contribute to 6-MP-mediated inhibitory effect on TNF-α production. Additionally, 6-MP also impeded TNF-α mRNA translation through prevention of LPS-activated PI3K/Akt/mTOR signaling cascades.

          Conclusions

          These results suggest that 6-MP might have a therapeutic potential in neuroinflammation-related neurodegenerative disorders through downregulation of microglia-mediated inflammatory processes.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12974-016-0543-5) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          TLR signaling.

          The TLR family senses the molecular signatures of microbial pathogens, and plays a fundamental role in innate immune responses. TLRs signal via a common pathway that leads to the expression of diverse inflammatory genes. In addition, each TLR elicits specific cellular responses to pathogens owing to differential usage of intracellular adapter proteins. Recent studies have revealed the importance of the subcellular localization of TLRs in pathogen recognition and signaling. TLR signaling pathways is negatively regulated by a number of cellular proteins to attenuate inflammation. Here, we describe recent advances in our understanding of the regulation of TLR-mediated signaling.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            CBP/p300 in cell growth, transformation, and development.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Duration of nuclear NF-kappaB action regulated by reversible acetylation.

              The nuclear expression and action of the nuclear factor kappa B (NF-kappaB) transcription factor requires signal-coupled phosphorylation and degradation of the IkappaB inhibitors, which normally bind and sequester this pleiotropically active factor in the cytoplasm. The subsequent molecular events that regulate the termination of nuclear NF-kappaB action remain poorly defined, although the activation of de novo IkappaBalpha gene expression by NF-kappaB likely plays a key role. Our studies now demonstrate that the RelA subunit of NF-kappaB is subject to inducible acetylation and that acetylated forms of RelA interact weakly, if at all, with IkappaBalpha. Acetylated RelA is subsequently deacetylated through a specific interaction with histone deacetylase 3 (HDAC3). This deacetylation reaction promotes effective binding to IkappaBalpha and leads in turn to IkappaBalpha-dependent nuclear export of the complex through a chromosomal region maintenance-1 (CRM-1)-dependent pathway. Deacetylation of RelA by HDAC3 thus acts as an intranuclear molecular switch that both controls the duration of the NF-kappaB transcriptional response and contributes to the replenishment of the depleted cytoplasmic pool of latent NF-kappaB-IkappaBalpha complexes.
                Bookmark

                Author and article information

                Contributors
                hy_sandra@yahoo.com.tw
                check172@yahoo.com.tw
                tshi33@gmail.com
                polarsoul837@yahoo.com.tw
                mjwang@tzuchi.com.tw
                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central (London )
                1742-2094
                13 April 2016
                13 April 2016
                2016
                : 13
                : 78
                Affiliations
                [ ]Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
                [ ]Department of Emergency Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
                Article
                543
                10.1186/s12974-016-0543-5
                4831152
                27075886
                177f4263-31b3-4d2d-b71b-b5642de865f7
                © Huang et al. 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 5 December 2015
                : 7 April 2016
                Categories
                Research
                Custom metadata
                © The Author(s) 2016

                Neurosciences
                6-mercaptopurine,microglia,tnf-α,nur77,nuclear factor-κb,histone h3 acetylation,pi3k/akt,mtor
                Neurosciences
                6-mercaptopurine, microglia, tnf-α, nur77, nuclear factor-κb, histone h3 acetylation, pi3k/akt, mtor

                Comments

                Comment on this article