17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Inhibition of HIV-1 replication in vitro and in human infected cells by modified antisense oligonucleotides targeting the tRNALys3/RNA initiation complex.

      Antisense & nucleic acid drug development
      Base Sequence, HIV-1, pathogenicity, physiology, Humans, Mutagenesis, Site-Directed, Nucleic Acid Conformation, Oligonucleotides, Antisense, pharmacology, RNA, Transfer, Lys, chemistry, genetics, RNA, Viral, Ribonuclease H, metabolism, Transcription, Genetic, Virus Replication, drug effects

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The untranslated 5' leader region of the human immunodeficiency virus type 1 (HIV-1) RNA plays an essential role in retroviral replication. It is the first retrotranscribed RNA region, primed from a cellular tRNALys3 partially annealed to the HIV-1 primer binding site (PBS). The structural and functional features of the HIV-1 reverse transcription initiation complex have been thoroughly studied. In this work, we used chemically modified antisense oligonucleotides (AS-ODN) as competitors of the natural tRNALys3 primer for the PBS region. Modified 2'-O-methyl AS-ODN were able to inhibit in vitro HIV-1 reverse transcription and displace the tRNALys3 previously annealed to the PBS. The destabilization of the initiation complex by 2'-O-methyl ODN was a sequence-specific process. We further demonstrated the importance of an anchor region contiguous to the PBS in the annealing of the antisense molecule, allowing the displacement of tRNALys3. The 20-mer 2'-O-methyl molecules were also able to inhibit viral replication in HIV-1-human infected cells, either by blocking cDNA synthesis during the early phase or by interfering with the annealing of the tRNALys3 primer to the PBS during the late phase of the viral cycle. Thus, the highly conserved retroviral initiation complex was shown to be a promising target when using the antisense strategy.

          Related collections

          Author and article information

          Comments

          Comment on this article