23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Clinical Significance of Unknown Sequence Variants in BRCA Genes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Germline mutations in BRCA1/2 genes are responsible for a large proportion of hereditary breast and/or ovarian cancers. Many highly penetrant predisposition alleles have been identified and include frameshift or nonsense mutations that lead to the translation of a truncated protein. Other alleles contain missense mutations, which result in amino acid substitution and intronic variants with splicing effect. The discovery of variants of uncertain/unclassified significance (VUS) is a result that can complicate rather than improve the risk assessment process. VUSs are mainly missense mutations, but also include a number of intronic variants and in-frame deletions and insertions. Over 2,000 unique BRCA1 and BRCA2 missense variants have been identified, located throughout the whole gene (Breast Cancer Information Core Database (BIC database)). Up to 10–20% of the BRCA tests report the identification of a variant of uncertain significance. There are many methods to discriminate deleterious/high-risk from neutral/low-risk unclassified variants ( i.e., analysis of the cosegregation in families of the VUS, measure of the influence of the VUSs on the wild-type protein activity, comparison of sequence conservation across multiple species), but only an integrated analysis of these methods can contribute to a real interpretation of the functional and clinical role of the discussed variants. The aim of our manuscript is to review the studies on BRCA VUS in order to clarify their clinical relevance.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1.

          A strong candidate for the 17q-linked BRCA1 gene, which influences susceptibility to breast and ovarian cancer, has been identified by positional cloning methods. Probable predisposing mutations have been detected in five of eight kindreds presumed to segregate BRCA1 susceptibility alleles. The mutations include an 11-base pair deletion, a 1-base pair insertion, a stop codon, a missense substitution, and an inferred regulatory mutation. The BRCA1 gene is expressed in numerous tissues, including breast and ovary, and encodes a predicted protein of 1863 amino acids. This protein contains a zinc finger domain in its amino-terminal region, but is otherwise unrelated to previously described proteins. Identification of BRCA1 should facilitate early diagnosis of breast and ovarian cancer susceptibility in some individuals as well as a better understanding of breast cancer biology.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Distinguishing homologous from analogous proteins.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results.

              Genetic testing of cancer susceptibility genes is now widely applied in clinical practice to predict risk of developing cancer. In general, sequence-based testing of germline DNA is used to determine whether an individual carries a change that is clearly likely to disrupt normal gene function. Genetic testing may detect changes that are clearly pathogenic, clearly neutral, or variants of unclear clinical significance. Such variants present a considerable challenge to the diagnostic laboratory and the receiving clinician in terms of interpretation and clear presentation of the implications of the result to the patient. There does not appear to be a consistent approach to interpreting and reporting the clinical significance of variants either among genes or among laboratories. The potential for confusion among clinicians and patients is considerable and misinterpretation may lead to inappropriate clinical consequences. In this article we review the current state of sequence-based genetic testing, describe other standardized reporting systems used in oncology, and propose a standardized classification system for application to sequence-based results for cancer predisposition genes. We suggest a system of five classes of variants based on the degree of likelihood of pathogenicity. Each class is associated with specific recommendations for clinical management of at-risk relatives that will depend on the syndrome. We propose that panels of experts on each cancer predisposition syndrome facilitate the classification scheme and designate appropriate surveillance and cancer management guidelines. The international adoption of a standardized reporting system should improve the clinical utility of sequence-based genetic tests to predict cancer risk. (c) 2008 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                10 September 2010
                September 2010
                : 2
                : 3
                : 1644-1660
                Affiliations
                [1 ]Department of Surgery and Oncology, Regional Reference Center for the Biomolecular Characterization and Genetic Screening of Hereditary Tumors, University of Palermo, Via del Vespro 127, 90127 Palermo, Italy; E-Mails: valevicio@ 123456yahoo.it (V.C.); loredana.bruno@ 123456unipa.it (L.B.); l.lapaglia@ 123456libero.it (L.L.P.); marcoperez@ 123456inwind.it (M.P.); m.naomi84@ 123456gmail.com (N.M.)
                [2 ]Department of Medical Biotechnologies and Legal Medicine, University of Palermo, Palermo, Italy; E-Mail: francescadigaudio@ 123456unipa.it (F.D.G.)
                Author notes
                [†]

                Both authors have contributed equally to this work.

                [* ] Author to whom correspondence should be addressed; E-Mail: lab-oncobiologia@ 123456usa.net ; Tel: +39-091-6552500; Fax: +39-091-6554529.
                Article
                cancers-02-01644
                10.3390/cancers2031644
                3837329
                24281179
                17944a84-a522-4afb-97d8-f59abef23288
                © 2010 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 29 June 2010
                : 08 July 2010
                : 31 August 2010
                Categories
                Review

                brca genes,variant,integrated models,oncogenetic counseling

                Comments

                Comment on this article