6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNA-297a regulates vascular calcification by targeting fibroblast growth factor 23

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective(s):

          Vascular calcification is one the major characteristics in patients with various types of chronic inflammatory disorders. MiRNAs have been shown to be involved in many normal biological functions as well as diseases; however, their role in vascular calcification has not received much attention.

          Materials and Methods:

          In the current study, we built a vascular calcification rat model using vitamin D3 plus nicotine and analyzed miRNA expression profile by miRNA chip assay. Potential target of one selected miRNA with sharpest variation in expression were predicted by both PicTar and TargetScan. The impact of the selected miRNA on the expression of the potential target on both mRNA and protein levels were measured by RT-PCR and Western blot, respectively.

          Results:

          Our results identified 16 dysregulated miRNAs, among which miR-297a showed the sharpest variation. Further analysis focusing on miR-297a revealed that fibroblast growth factor 23 (FGF23) was a potential target of miR297a. Measurement of FGF23 and its regulator Klotho on both mRNA and protein levels demonstrated that FGF23 was significantly increased while Klotho was decreased in rats with vascular calcification.

          Conclusion:

          Our results indicated that FGF23 was target of miR-297a and decreased miR-297a in vascular calcification lead to the increase of FGF23, which together with Klotho might enhance vascular calcification. The findings of this study could provide valuable information for the understanding of mechanisms underlying miR-dependent vascular calcification as well as potential treatment target for the disease.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Klotho deficiency causes vascular calcification in chronic kidney disease.

          Soft-tissue calcification is a prominent feature in both chronic kidney disease (CKD) and experimental Klotho deficiency, but whether Klotho deficiency is responsible for the calcification in CKD is unknown. Here, wild-type mice with CKD had very low renal, plasma, and urinary levels of Klotho. In humans, we observed a graded reduction in urinary Klotho starting at an early stage of CKD and progressing with loss of renal function. Despite induction of CKD, transgenic mice that overexpressed Klotho had preserved levels of Klotho, enhanced phosphaturia, better renal function, and much less calcification compared with wild-type mice with CKD. Conversely, Klotho-haploinsufficient mice with CKD had undetectable levels of Klotho, worse renal function, and severe calcification. The beneficial effect of Klotho on vascular calcification was a result of more than its effect on renal function and phosphatemia, suggesting a direct effect of Klotho on the vasculature. In vitro, Klotho suppressed Na(+)-dependent uptake of phosphate and mineralization induced by high phosphate and preserved differentiation in vascular smooth muscle cells. In summary, Klotho is an early biomarker for CKD, and Klotho deficiency contributes to soft-tissue calcification in CKD. Klotho ameliorates vascular calcification by enhancing phosphaturia, preserving glomerular filtration, and directly inhibiting phosphate uptake by vascular smooth muscle. Replacement of Klotho may have therapeutic potential for CKD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of bone development and extracellular matrix protein genes by RUNX2.

            RUNX2 is a multifunctional transcription factor that controls skeletal development by regulating the differentiation of chondrocytes and osteoblasts and the expression of many extracellular matrix protein genes during chondrocyte and osteoblast differentiation. This transcription factor plays a major role at the late stage of chondrocyte differentiation: it is required for chondrocyte maturation and regulates Col10a1 expression in hypertrophic chondrocytes and the expression of Spp1, Ibsp, and Mmp13 in terminal hypertrophic chondrocytes. It is essential for the commitment of pluripotent mesenchymal cells to the osteoblast lineage. During osteoblast differentiation, RUNX2 upregulates the expression of bone matrix protein genes including Col1a1, Spp1, Ibsp, Bglap, and Fn1 in vitro and activates many promoters including those of Col1a1, Col1a2, Spp1, Bglap, and Mmp13. However, overexpression of Runx2 inhibits osteoblast maturation and reduces Col1a1 and Bglap expression. The inhibition of RUNX2 in mature osteoblasts does not reduce the expression of Col1a1 and Bglap in mice. Thus, RUNX2 directs pluripotent mesenchymal cells to the osteoblast lineage, triggers the expression of major bone matrix protein genes, and keeps the osteoblasts in an immature stage, but does not play a major role in the maintenance of the expression of Col1a1 or Bglap in mature osteoblasts. During bone development, RUNX2 induces osteoblast differentiation and increases the number of immature osteoblasts, which form immature bone, whereas Runx2 expression has to be downregulated for differentiation into mature osteoblasts, which form mature bone. During dentinogenesis, Runx2 expression is downregulated, and RUNX2 inhibits the terminal differentiation of odontoblasts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNA in autoimmunity and autoimmune diseases.

              MicroRNAs (miRNAs) are small conserved non-coding RNA molecules that post-transcriptionally regulate gene expression by targeting the 3' untranslated region (UTR) of specific messenger RNAs (mRNAs) for degradation or translational repression. miRNA-mediated gene regulation is critical for normal cellular functions such as the cell cycle, differentiation, and apoptosis, and as much as one-third of human mRNAs may be miRNA targets. Emerging evidence has demonstrated that miRNAs play a vital role in the regulation of immunological functions and the prevention of autoimmunity. Here we review the many newly discovered roles of miRNA regulation in immune functions and in the development of autoimmunity and autoimmune disease. Specifically, we discuss the involvement of miRNA regulation in innate and adaptive immune responses, immune cell development, T regulatory cell stability and function, and differential miRNA expression in rheumatoid arthritis and systemic lupus erythematosus.
                Bookmark

                Author and article information

                Journal
                Iran J Basic Med Sci
                Iran J Basic Med Sci
                Iranian Journal of Basic Medical Sciences
                Mashhad University of Medical Sciences (Iran )
                2008-3866
                2008-3874
                December 2016
                : 19
                : 12
                : 1331-1336
                Affiliations
                [1 ]Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052 China
                Author notes
                [* ] Corresponding author: Shuijun Zhang. Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, Henan 450052 China. Tel: +86-0371-66913001; email: sj_zhang_fhzu@ 123456outlook.com
                Article
                IJBMS-19-1331
                10.22038/ijbms.2016.7920
                5220239
                1797e07f-e209-4631-9873-8457ca54af8a
                Copyright: © Iranian Journal of Basic Medical Sciences

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 04 May 2016
                : 18 October 2016
                Categories
                Original Article

                fibroblast growth factor 23,microrna-297a,chronic inflammatory disorder,vascular calcification,klotho

                Comments

                Comment on this article