17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of Clinically Relevant Oncolytic Virus Platforms for Enhancing T Cell Therapy of Solid Tumors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite some promising results, the majority of patients do not benefit from T cell therapies, as tumors prevent T cells from entering the tumor, shut down their activity, or downregulate key antigens. Due to their nature and mechanism of action, oncolytic viruses have features that can help overcome many of the barriers currently facing T cell therapies of solid tumors. This study aims to understand how four different oncolytic viruses (adenovirus, vaccinia virus, herpes simplex virus, and reovirus) perform in that task. For that purpose, an immunocompetent in vivo tumor model featuring adoptive tumor-infiltrating lymphocyte (TIL) therapy was used. Tumor growth control (p < 0.001) and survival analyses suggest that adenovirus was most effective in enabling T cell therapy. The complete response rate was 62% for TILs + adenovirus versus 17.5% for TILs + PBS. Of note, TIL biodistribution did not explain efficacy differences between viruses. Instead, immunostimulatory shifts in the tumor microenvironment mirrored efficacy results. Overall, the use of oncolytic viruses can improve the utility of T cell therapies, and additional virus engineering by arming with transgenes can provide further antitumor effects. This phenomenon was seen when an unarmed oncolytic adenovirus was compared to Ad5/3-E2F-d24-hTNFa-IRES-hIL2 (TILT-123). A clinical trial is ongoing, where patients receiving TIL treatment also receive TILT-123 (ClinicalTrials.gov: NCT04217473).

          Graphical Abstract

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          CD22-CAR T Cells Induce Remissions in CD19-CAR Naïve and Resistant B-ALL

          Chimeric antigen receptor (CAR) T-cells targeting CD19 mediate potent effects in relapsed/refractory pre-B cell acute lymphoblastic leukemia (B-ALL) but antigen loss is a frequent cause of resistance to CD19-targeted immunotherapy. CD22 is also expressed on most B-ALL and usually retained following CD19 loss. We report results from a phase I trial testing a novel CD22-CAR in twenty-one children and adults, including 17 previously treated with CD19-directed immunotherapy. Dose dependent anti-leukemic activity was observed with complete remission in 73% (11/15) of patients receiving ≥ 1 × 106 CD22-CART cells/kg, including 5/5 patients with CD19dim/neg B-ALL. Median remission duration was 6 months. Relapses were associated with diminished CD22 site density that likely permitted escape from killing by CD22-CART cells. These results are the first to eastablish the clinical activity of a CD22-CAR in pre-B cell ALL, including in leukemia resistant to anti-CD19 immunotherapy, demonstrating comparable potency to CD19-CART at biologically active doses in B-ALL. They also highlight the critical role played by antigen density in regulating CAR function. (Funded by NCI Intramural Research Program)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Cold Tumors: A Therapeutic Challenge for Immunotherapy

            Therapeutic monoclonal antibodies targeting immune checkpoints (ICPs) have changed the treatment landscape of many tumors. However, response rate remains relatively low in most cases. A major factor involved in initial resistance to ICP inhibitors is the lack or paucity of tumor T cell infiltration, characterizing the so-called “cold tumors.” In this review, we describe the main mechanisms involved in the absence of T cell infiltration, including lack of tumor antigens, defect in antigen presentation, absence of T cell activation and deficit of homing into the tumor bed. We discuss then the different therapeutic approaches that could turn cold into hot tumors. In this way, specific therapies are proposed according to their mechanism of action. In addition, ‘‘supra-physiological’’ therapies, such as T cell recruiting bispecific antibodies and Chimeric Antigen Receptor (CAR) T cells, may be active regardless of the mechanism involved, especially in MHC class I negative tumors. The determination of the main factors implicated in the lack of preexisting tumor T cell infiltration is crucial for the development of adapted algorithms of treatments for cold tumors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy.

              Preexisting lymphocytic infiltration of tumors is associated with superior prognostic outcomes in a variety of cancers. Recent studies also suggest that lymphocytic responses may identify patients more likely to benefit from therapies targeting immune checkpoints, suggesting that therapeutic efficacy of immune checkpoint blockade can be enhanced through strategies that induce tumor inflammation. To achieve this effect, we explored the immunotherapeutic potential of oncolytic Newcastle disease virus (NDV). We find that localized intratumoral therapy of B16 melanoma with NDV induces inflammatory responses, leading to lymphocytic infiltrates and antitumor effect in distant (nonvirally injected) tumors without distant virus spread. The inflammatory effect coincided with distant tumor infiltration with tumor-specific CD4(+) and CD8(+) T cells, which was dependent on the identity of the virus-injected tumor. Combination therapy with localized NDV and systemic CTLA-4 blockade led to rejection of preestablished distant tumors and protection from tumor rechallenge in poorly immunogenic tumor models, irrespective of tumor cell line sensitivity to NDV-mediated lysis. Therapeutic effect was associated with marked distant tumor infiltration with activated CD8(+) and CD4(+) effector but not regulatory T cells, and was dependent on CD8(+) cells, natural killer cells, and type I interferon. Our findings demonstrate that localized therapy with oncolytic NDV induces inflammatory immune infiltrates in distant tumors, making them susceptible to systemic therapy with immunomodulatory antibodies, which provides a strong rationale for investigation of such combination therapies in the clinic.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mol Ther Oncolytics
                Mol Ther Oncolytics
                Molecular Therapy Oncolytics
                American Society of Gene & Cell Therapy
                2372-7705
                19 March 2020
                26 June 2020
                19 March 2020
                : 17
                : 47-60
                Affiliations
                [1 ]Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, 00290 Helsinki, Finland
                [2 ]TILT Biotherapeutics, 00290 Helsinki, Finland
                [3 ]Department of Chemistry, Radiochemistry, University of Helsinki, 00560 Helsinki, Finland
                [4 ]Regenerative Pharmacology Group, Division of Pharmacology and Pharmacotherapy, University of Helsinki, 00560 Helsinki, Finland
                [5 ]Pathology, Finnish Food Authority, 00790 Helsinki, Finland
                [6 ]Institute of Biomedicine, University of Turku, 20500 Turku, Finland
                [7 ]Department of Obstetrics and Gynecology, Helsinki University Central Hospital, 00290 Helsinki, Finland
                [8 ]Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland
                Author notes
                []Corresponding author: Akseli Hemminki, Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, 00290 Helsinki, Finland. akseli.hemminki@ 123456helsinki.fi
                Article
                S2372-7705(20)30024-3
                10.1016/j.omto.2020.03.003
                7163046
                32322662
                17a4c15a-acfa-4fbd-b8aa-a585f9f44ae0
                © 2020 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 12 February 2020
                : 13 March 2020
                Categories
                Article

                oncolytic virus,immunotherapy,t cell therapy,tumor microenvironment,solid tumor,gene therapy,adenovirus,vaccinia virus,herpes simplex virus,reovirus

                Comments

                Comment on this article