7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains

      , , ,
      Trends in Microbiology
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update.

          Knowledge of the molecular genetic basis of resistance to antituberculous agents has advanced rapidly since we reviewed this topic 3 years ago. Virtually all isolates resistant to rifampin and related rifamycins have a mutation that alters the sequence of a 27-amino-acid region of the beta subunit of ribonucleic acid (RNA) polymerase. Resistance to isoniazid (INH) is more complex. Many resistant organisms have mutations in the katG gene encoding catalase-peroxidase that result in altered enzyme structure. These structural changes apparently result in decreased conversion of INH to a biologically active form. Some INH-resistant organisms also have mutations in the inhA locus or a recently characterized gene (kasA) encoding a beta-ketoacyl-acyl carrier protein synthase. Streptomycin resistance is due mainly to mutations in the 16S rRNA gene or the rpsL gene encoding ribosomal protein S12. Resistance to pyrazinamide in the great majority of organisms is caused by mutations in the gene (pncA) encoding pyrazinamidase that result in diminished enzyme activity. Ethambutol resistance in approximately 60% of organisms is due to amino acid replacements at position 306 of an arabinosyltransferase encoded by the embB gene. Amino acid changes in the A subunit of deoxyribonucleic acid gyrase cause fluoroquinolone resistance in most organisms. Kanamycin resistance is due to nucleotide substitutions in the rrs gene encoding 16S rRNA. Multidrug resistant strains arise by sequential accumulation of resistance mutations for individual drugs. Limited evidence exists indicating that some drug resistant strains with mutations that severely alter catalase-peroxidase activity are less virulent in animal models. A diverse array of strategies is available to assist in rapid detection of drug resistance-associated gene mutations. Although remarkable advances have been made, much remains to be learned about the molecular genetic basis of drug resistance in Mycobacterium tuberculosis. It is reasonable to believe that development of new therapeutics based on knowledge obtained from the study of the molecular mechanisms of resistance will occur.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination.

            One-third of humans are infected with Mycobacterium tuberculosis, the causative agent of tuberculosis. Sequence analysis of two megabases in 26 structural genes or loci in strains recovered globally discovered a striking reduction of silent nucleotide substitutions compared with other human bacterial pathogens. The lack of neutral mutations in structural genes indicates that M. tuberculosis is evolutionarily young and has recently spread globally. Species diversity is largely caused by rapidly evolving insertion sequences, which means that mobile element movement is a fundamental process generating genomic variation in this pathogen. Three genetic groups of M. tuberculosis were identified based on two polymorphisms that occur at high frequency in the genes encoding catalase-peroxidase and the A subunit of gyrase. Group 1 organisms are evolutionarily old and allied with M. bovis, the cause of bovine tuberculosis. A subset of several distinct insertion sequence IS6110 subtypes of this genetic group have IS6110 integrated at the identical chromosomal insertion site, located between dnaA and dnaN in the region containing the origin of replication. Remarkably, study of approximately 6,000 isolates from patients in Houston and the New York City area discovered that 47 of 48 relatively large case clusters were caused by genotypic group 1 and 2 but not group 3 organisms. The observation that the newly emergent group 3 organisms are associated with sporadic rather than clustered cases suggests that the pathogen is evolving toward a state of reduced transmissability or virulence.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem DNA repeats.

              Genetic loci containing variable numbers of tandem repeats (VNTR loci) form the basis for human gene mapping and identification, forensic analysis and paternity testing. The variability of bacterial tandem repeats has not been systematically studied. Eleven tandem repeat loci in the M. tuberculosis genome were analysed. Five major polymorphic tandem repeat (MPTR) loci contained 15-bp repeats with substantial sequence variation in adjacent copies. Six exact tandem repeat (ETR) loci contained large DNA repeats with identical sequences in adjacent repeats. These 11 loci were amplified in 48 strains to determine the number of tandem repeats at each locus. The strains analysed included 25 wild-type strains of M. tuberculosis, M. bovis, M. africanum and M. microti and 23 substrains of the attenuated M. bovis BCG vaccine. One of the five MPTR loci and all six ETR loci had length polymorphisms corresponding to insertions or deletions of tandem repeats. Most ETR loci were located in intergenic regions where copy number may influence expression of downstream genes. Each ETR locus had multiple alleles in the panel. Combined analysis identified 22 distinct allele profiles in 25 wild-type strains of the M. tuberculosis complex and five allele profiles in 23 M. bovis BCG substrains. Allele profiles were reproducible and stable, as demonstrated by analyses of multiple isolates of particular reference strains obtained from different laboratories. VNTR typing may be generally useful for strain differentiation and evolutionary studies in bacteria.
                Bookmark

                Author and article information

                Journal
                Trends in Microbiology
                Trends in Microbiology
                Elsevier BV
                0966842X
                January 2002
                January 2002
                : 10
                : 1
                : 45-52
                Article
                10.1016/S0966-842X(01)02277-6
                17ab5b3b-f655-4ead-b2fe-2549e39f1e8c
                © 2002

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article