11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      How accurately can we assess zoonotic risk?

      review-article
      1 , * , 2 , 3 ,   1
      PLoS Biology
      Public Library of Science

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Identifying the animal reservoirs from which zoonotic viruses will likely emerge is central to understanding the determinants of disease emergence. Accordingly, there has been an increase in studies attempting zoonotic “risk assessment.” Herein, we demonstrate that the virological data on which these analyses are conducted are incomplete, biased, and rapidly changing with ongoing virus discovery. Together, these shortcomings suggest that attempts to assess zoonotic risk using available virological data are likely to be inaccurate and largely only identify those host taxa that have been studied most extensively. We suggest that virus surveillance at the human–animal interface may be more productive.

          Abstract

          Determining which organisms harbour viruses that could potentially infect humans is of great topical interest. This Essay demonstrates that the data on which such zoonotic risk assessments are conducted are incomplete, biased, and rapidly changing with ongoing virus discovery.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Global trends in emerging infectious diseases

          The next new disease Emerging infectious diseases are a major threat to health: AIDS, SARS, drug-resistant bacteria and Ebola virus are among the more recent examples. By identifying emerging disease 'hotspots', the thinking goes, it should be possible to spot health risks at an early stage and prepare containment strategies. An analysis of over 300 examples of disease emerging between 1940 and 2004 suggests that these hotspots can be accurately mapped based on socio-economic, environmental and ecological factors. The data show that the surveillance effort, and much current research spending, is concentrated in developed economies, yet the risk maps point to developing countries as the more likely source of new diseases. Supplementary information The online version of this article (doi:10.1038/nature06536) contains supplementary material, which is available to authorized users.
            • Record: found
            • Abstract: found
            • Article: not found

            Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins

            The ongoing outbreak of viral pneumonia in China and across the world is associated with a new coronavirus, SARS-CoV-21. This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection2. Although bats are probable reservoir hosts for SARS-CoV-2, the identity of any intermediate host that may have facilitated transfer to humans is unknown. Here we report the identification of SARS-CoV-2-related coronaviruses in Malayan pangolins (Manis javanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin-associated coronaviruses that belong to two sub-lineages of SARS-CoV-2-related coronaviruses, including one that exhibits strong similarity in the receptor-binding domain to SARS-CoV-2. The discovery of multiple lineages of pangolin coronavirus and their similarity to SARS-CoV-2 suggests that pangolins should be considered as possible hosts in the emergence of new coronaviruses and should be removed from wet markets to prevent zoonotic transmission.
              • Record: found
              • Abstract: found
              • Article: not found

              Redefining the invertebrate RNA virosphere

              Current knowledge of RNA virus biodiversity is both biased and fragmentary, reflecting a focus on culturable or disease-causing agents. Here we profile the transcriptomes of over 220 invertebrate species sampled across nine animal phyla and report the discovery of 1,445 RNA viruses, including some that are sufficiently divergent to comprise new families. The identified viruses fill major gaps in the RNA virus phylogeny and reveal an evolutionary history that is characterized by both host switching and co-divergence. The invertebrate virome also reveals remarkable genomic flexibility that includes frequent recombination, lateral gene transfer among viruses and hosts, gene gain and loss, and complex genomic rearrangements. Together, these data present a view of the RNA virosphere that is more phylogenetically and genomically diverse than that depicted in current classification schemes and provide a more solid foundation for studies in virus ecology and evolution.

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, CA USA )
                1544-9173
                1545-7885
                20 April 2021
                April 2021
                20 April 2021
                : 19
                : 4
                : e3001135
                Affiliations
                [1 ] Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, Australia
                [2 ] Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
                [3 ] Institute of Environmental Science and Research, Wellington, New Zealand
                Princeton University, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist

                Author information
                https://orcid.org/0000-0002-5629-0196
                https://orcid.org/0000-0003-0970-0153
                https://orcid.org/0000-0001-9596-3552
                Article
                PBIOLOGY-D-20-02612
                10.1371/journal.pbio.3001135
                8057571
                33878111
                17b5ac9b-f685-4788-8234-459b37e2debb
                © 2021 Wille et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                Page count
                Figures: 3, Tables: 0, Pages: 12
                Funding
                Funded by: Australian Research Council
                Award ID: DE200100977
                Award Recipient :
                Funded by: Australian Research Council
                Award ID: FL170100022
                Award Recipient :
                E.C.H. is funded by an Australian Research Council Australian Laureate Fellowship (FL170100022). M.W. is supported by an Australian Research Council Discovery Early Career Researcher Award (DE200100977). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Essay
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Zoonoses
                Medicine and Health Sciences
                Epidemiology
                Medical Risk Factors
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Orthomyxoviruses
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Orthomyxoviruses
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Orthomyxoviruses
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Orthomyxoviruses
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Vertebrates
                Amniotes
                Birds
                Biology and Life Sciences
                Zoology
                Animals
                Vertebrates
                Amniotes
                Birds
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Vertebrates
                Amniotes
                Mammals
                Shrews
                Biology and Life Sciences
                Zoology
                Animals
                Vertebrates
                Amniotes
                Mammals
                Shrews
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Orthomyxoviruses
                Influenza viruses
                Influenza A virus
                Biology and life sciences
                Microbiology
                Medical microbiology
                Microbial pathogens
                Viral pathogens
                Orthomyxoviruses
                Influenza viruses
                Influenza A virus
                Medicine and health sciences
                Pathology and laboratory medicine
                Pathogens
                Microbial pathogens
                Viral pathogens
                Orthomyxoviruses
                Influenza viruses
                Influenza A virus
                Biology and life sciences
                Organisms
                Viruses
                Viral pathogens
                Orthomyxoviruses
                Influenza viruses
                Influenza A virus
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Coronaviruses
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Coronaviruses
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Coronaviruses
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Coronaviruses

                Life sciences
                Life sciences

                Comments

                Comment on this article

                Related Documents Log