5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Engineering luminescent metal nanoclusters for sensing applications

      , , , , ,
      Coordination Chemistry Reviews
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references256

          • Record: found
          • Abstract: not found
          • Article: not found

          Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aggregation-induced emission.

            Luminogenic materials with aggregation-induced emission (AIE) attributes have attracted much interest since the debut of the AIE concept in 2001. In this critical review, recent progress in the area of AIE research is summarized. Typical examples of AIE systems are discussed, from which their structure-property relationships are derived. Through mechanistic decipherment of the photophysical processes, structural design strategies for generating new AIE luminogens are developed. Technological, especially optoelectronic and biological, applications of the AIE systems are exemplified to illustrate how the novel AIE effect can be utilized for high-tech innovations (183 references). This journal is © The Royal Society of Chemistry 2011
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities.

              Colloidal nanoparticles are being intensely pursued in current nanoscience research. Nanochemists are often frustrated by the well-known fact that no two nanoparticles are the same, which precludes the deep understanding of many fundamental properties of colloidal nanoparticles in which the total structures (core plus surface) must be known. Therefore, controlling nanoparticles with atomic precision and solving their total structures have long been major dreams for nanochemists. Recently, these goals are partially fulfilled in the case of gold nanoparticles, at least in the ultrasmall size regime (1-3 nm in diameter, often called nanoclusters). This review summarizes the major progress in the field, including the principles that permit atomically precise synthesis, new types of atomic structures, and unique physical and chemical properties of atomically precise nanoparticles, as well as exciting opportunities for nanochemists to understand very fundamental science of colloidal nanoparticles (such as the stability, metal-ligand interfacial bonding, ligand assembly on particle surfaces, aesthetic structural patterns, periodicities, and emergence of the metallic state) and to develop a range of potential applications such as in catalysis, biomedicine, sensing, imaging, optics, and energy conversion. Although most of the research activity currently focuses on thiolate-protected gold nanoclusters, important progress has also been achieved in other ligand-protected gold, silver, and bimetal (or alloy) nanoclusters. All of these types of unique nanoparticles will bring unprecedented opportunities, not only in understanding the fundamental questions of nanoparticles but also in opening up new horizons for scientific studies of nanoparticles.
                Bookmark

                Author and article information

                Contributors
                Journal
                Coordination Chemistry Reviews
                Coordination Chemistry Reviews
                Elsevier BV
                00108545
                January 2022
                January 2022
                : 451
                : 214268
                Article
                10.1016/j.ccr.2021.214268
                17bf838b-97f0-416e-af32-74e4eef80386
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article