4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deep materials informatics: Applications of deep learning in materials science

      ,
      MRS Communications
      Springer Science and Business Media LLC

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The growing application of data-driven analytics in materials science has led to the rise of materials informatics. Within the arena of data analytics, deep learning has emerged as a game-changing technique in the last few years, enabling numerous real-world applications, such as self-driving cars. In this paper, the authors present an overview of deep learning, its advantages, challenges, and recent applications on different types of materials data. The increasingly availability of materials databases and big data in general, along with groundbreaking advances in deep learning offers a lot of promise to accelerate the discovery, design, and deployment of next-generation materials.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          Deep learning.

          Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Learning representations by back-propagating errors

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Commentary: The Materials Project: A materials genome approach to accelerating materials innovation

                Bookmark

                Author and article information

                Journal
                MRS Communications
                MRS Communications
                Springer Science and Business Media LLC
                2159-6859
                2159-6867
                September 2019
                September 20 2019
                September 2019
                : 9
                : 3
                : 779-792
                Article
                10.1557/mrc.2019.73
                17c1b32d-eb91-4c82-9e22-9676eb86ca23
                © 2019

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article