18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microvascular density and immunohistochemical expression of VEGF, VEGFR-1 and VEGFR-2 in benign prostatic hyperplasia, high-grade prostate intraepithelial neoplasia and prostate cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          The aim of our study was to determine and compare angiogenesis in benign prostatic hyperplasia (BPH), high-grade prostate intraepithelial neoplasia (HGPIN) and prostate cancer (Pca). Moreover, we evaluated its role as a prognostic factor for Pca.

          Material and methods

          We examined 39, 12 and 51 samples of BPH, HGPIN and Pca, respectively. Immunohistochemical methods were applied in order to evaluate the expression of VEGF and its receptors (VEGFR-1, VEGFR-2), while microvascular density (MVD) was determined using CD105. In Pca samples, we recorded stage, differentiation, perineural invasion, adjuvant radiotherapy and their correlation with angiogenesis.

          Results

          225 The expression of VEGF, VEGFR-1 and VEGFR-2 was significantly higher in Pca than compared to BPH (p <0.001, p <0.001 and p <0.001, respectively) and HGPIN (p <0.001, p <0.001 and p = 0.04, respectively), while there was no difference between BPH and HGPIN. MVD was higher in Pca compared to BPH (p <0.001) and HGPIN (p <0.01), while there was no difference between BPH and HGPIN. VEGF expression and MVD were significantly greater in Pca samples with poor differentiation (p = 0.044 and p = 0.038, respectively) and perineural invasion (p <0.001 and p = 0.019, respectively), while overexpression of VEGF was associated with advanced pathological stage (p = 0.047).

          Conclusions

          Angiogenesis is more prominent in Pca than in BPH and HGPIN, while there is no difference between BPH and HGPIN. Pharmaceutical inhibition of angiogenesis could be a valuable therapeutic option for Pca in the near future.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Angiogenesis in cancer, vascular, rheumatoid and other disease.

          J Folkman (1995)
          Recent discoveries of endogenous negative regulators of angiogenesis, thrombospondin, angiostatin and glioma-derived angiogenesis inhibitory factor, all associated with neovascularized tumours, suggest a new paradigm of tumorigenesis. It is now helpful to think of the switch to the angiogenic phenotype as a net balance of positive and negative regulators of blood vessel growth. The extent to which the negative regulators are decreased during this switch may dictate whether a primary tumour grows rapidly or slowly and whether metastases grow at all.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endoglin (CD105): a marker of tumor vasculature and potential target for therapy.

            Endoglin (CD105) is an accessory protein of the transforming growth factor-beta receptor system expressed on vascular endothelial cells. Mutation of the endoglin gene is associated with hereditary hemorrhagic telangiectasias, or Osler-Weber-Rendu syndrome, and has been studied extensively in the context of this disease. The expression of endoglin is elevated on the endothelial cells of healing wounds, developing embryos, inflammatory tissues, and solid tumors. Endoglin is a marker of activated endothelium, and its vascular expression is limited to proliferating cells. Recent studies identified endoglin expression in several solid tumor types, with the level of expression correlating with various clinicopathologic factors including decreased survival and presence of metastases. Attempts to target endoglin and the cells that express this protein in tumor-bearing mice have yielded promising results.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2). A reassessment using novel receptor-specific vascular endothelial growth factor mutants.

              Endothelial cells express two related vascular endothelial growth factor (VEGF) receptor tyrosine kinases, KDR (kinase-insert domain containing receptor, or VEGFR-2) and Flt-1 (fms-like tyrosine kinase, or VEGFR-1). Although considerable experimental evidence links KDR activation to endothelial cell mitogenesis, there is still significant uncertainty concerning the role of individual VEGF receptors for other biological effects such as vascular permeability. VEGF mutants that bind to either KDR or Flt-1 with high selectivity were used to determine which of the two receptors serves to mediate different VEGF functions. In addition to mediating mitogenic signaling, selective KDR activation was sufficient for the activation of intracellular signaling pathways implicated in cell migration. KDR stimulation caused tyrosine phosphorylation of both phosphatidylinositol 3-kinase and phospholipase Cgamma in primary endothelial cells and stimulated cell migration. KDR-selective VEGF was also able to induce angiogenesis in the rat cornea to an extent indistinguishable from wild type VEGF. We also demonstrate that KDR, but not Flt-1, stimulation is responsible for the induction of vascular permeability by VEGF.
                Bookmark

                Author and article information

                Journal
                Cent European J Urol
                Cent European J Urol
                CEJU
                Central European Journal of Urology
                Polish Urological Association
                2080-4806
                2080-4873
                25 January 2016
                2016
                : 69
                : 1
                : 63-71
                Affiliations
                [1 ]Hatzikosta General Hospital, Department of Urology, Ioannina, Greece
                [2 ]Department of Pathology, University of Ioannina School of Medicine, Ioannina, Greece
                [3 ]Department of Urology, University of Ioannina School of Medicine, Ioannina, Greece
                Author notes
                Corresponding author Nikolaos Grivas, Institution G. Hatzikosta General Hospital, Department of Urology, Makriyianni Avenue, 45001 Ioannina, Greece. phone: 00 30694 5282 940. nikolaosgrivas@ 123456hotmail.com
                Article
                00726
                10.5173/ceju.2016.726
                4846728
                27123329
                17c21edb-e084-4bc7-91d2-a95382e715a0
                Copyright by Polish Urological Association

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License, allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.

                History
                : 25 October 2015
                : 07 November 2015
                : 26 December 2015
                Categories
                Original Paper

                vegf,vegf receptors,pathologic angiogenesis,cd105 antigen

                Comments

                Comment on this article