31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Matrine Derivative M54 Suppresses Osteoclastogenesis and Prevents Ovariectomy-Induced Bone Loss by Targeting Ribosomal Protein S5

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Post-menopausal osteoporosis (PMOP) is a metabolic bone disorder characterized by low bone mass and micro-architectural deterioration of bone tissue. The over-activated osteoclastogenesis, which plays an important role in osteoporosis, has become an important therapeutic target. M54 was a bioactive derivative of the Chinese traditional herb matrine. We found that M54 could suppress RANKL-induced osteoclastogenesis in bone marrow mononuclear cells and RAW264.7 cells through suppressing NF-κB, PI3K/AKT, and MAPKs pathways activity in vitro, and prevent ovariectomy-induced bone loss in vivo. Our previous study has proved that ribosomal protein S5 (RPS5) was a direct target of M19, based on which M54 was synthesized. Thus we deduced that M54 also targeted RPS5. During osteoclastogenesis, the RPS5 level in RAW264.7 cells was significantly down-regulated while M54 could maintain its level. After RPS5 was silenced, the inhibitory effects of M54 on osteoclastogenesis were partially compromised, indicating that M54 took effects through targeting RPS5. In summary, M54 was a potential clinical medicine for post-menopause osteoporosis treatment, and RPS5 is a possible key protein in PMOP.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Biology of the RANKL–RANK–OPG System in Immunity, Bone, and Beyond

          Discovery and characterization of the cytokine receptor-cytokine-decoy receptor triad formed by receptor activator of nuclear factor kappa-B ligand (RANKL)–receptor activator of NF-κB (RANK)–osteoprotegerin (OPG) have led not only to immense advances in understanding the biology of bone homeostasis, but have also crystalized appreciation of the critical regulatory relationship that exists between bone and immunity, resulting in the emergence of the burgeoning field of osteoimmunology. RANKL–RANK–OPG are members of the tumor necrosis factor (TNF) and TNF receptor superfamilies, and share signaling characteristics common to many members of each. Developmentally regulated and cell-type specific expression patterns of each of these factors have revealed key regulatory functions for RANKL–RANK–OPG in bone homeostasis, organogenesis, immune tolerance, and cancer. Successful efforts at designing and developing therapeutic agents targeting RANKL–RANK–OPG have been undertaken for osteoporosis, and additional efforts are underway for other conditions. In this review, we will summarize the basic biology of the RANKL–RANK–OPG system, relate its cell-type specific functions to system-wide mechanisms of development and homeostasis, and highlight emerging areas of interest for this cytokine group.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            miR-34a Blocks Osteoporosis and Bone Metastasis by Inhibiting Osteoclastogenesis and Tgif2

            The bone resorbing osteoclasts significantly contribute to osteoporosis and cancer bone metastases 1-3 . MicroRNAs (miRNAs) play important roles in physiology and disease 4,5 , and present tremendous therapeutic potential 6 . Nonetheless, how miRNAs regulate skeletal biology is underexplored. Here we identify miR-34a as a novel and critical suppressor of osteoclastogenesis, bone resorption and the bone metastatic niche. miR-34a is down-regulated during osteoclast differentiation. Osteoclastic miR-34a over-expressing transgenic mice exhibit lower bone resorption and higher bone mass. Conversely, miR-34a knockout and heterozygous mice exhibit elevated bone resorption and reduced bone mass. Consequently, ovariectomy-induced osteoporosis, as well as bone metastasis of breast and skin cancers, are diminished in osteoclastic miR-34a transgenic mice, and can be effectively attenuated by miR-34a nanoparticle treatment. Mechanistically, we identify Tgif2 (transforming growth factor-beta-induced factor 2) as an essential direct miR-34a target that is pro-osteoclastogenic. Tgif2 deletion reduces bone resorption and abolishes miR-34a regulation. Together, using mouse genetic, pharmacological and disease models, we reveal miR-34a as a key osteoclast suppressor and a potential therapeutic strategy to confer skeletal protection and ameliorate bone metastasis of cancers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interleukin-6, A Cytokine Critical to Mediation of Inflammation, Autoimmunity and Allograft Rejection: Therapeutic Implications of IL-6 Receptor Blockade.

              The success of kidney transplants is limited by the lack of robust improvements in long-term survival. It is now recognized that alloimmune responses are responsible for the majority of allograft failures. Development of novel therapies to decrease allosensitization is critical. The lack of new drug development in kidney transplantation necessitated repurposing drugs initially developed in oncology and autoimmunity. Among these is tocilizumab (anti-IL-6 receptor [IL-6R]) which holds promise for modulating multiple immune pathways responsible for allograft injury and loss. Interleukin-6 is a cytokine critical to proinflammatory and immune regulatory cascades. Emerging data have identified important roles for IL-6 in innate immune responses and adaptive immunity. Excessive IL-6 production is associated with activation of T-helper 17 cell and inhibition of regulatory T cell with attendant inflammation. Plasmablast production of IL-6 is critical for initiation of T follicular helper cells and production of high-affinity IgG. Tocilizumab is the first-in-class drug developed to treat diseases mediated by IL-6. Data are emerging from animal and human studies indicating a critical role for IL-6 in mediation of cell-mediated rejection, antibody-mediated rejection, and chronic allograft vasculopathy. This suggests that anti-IL-6/IL-6R blockade could be effective in modifying T- and B-cell responses to allografts. Initial data from our group suggest anti-IL-6R therapy is of value in desensitization and prevention and treatment of antibody-mediated rejection. In addition, human trials have shown benefits in treatment of graft versus host disease in matched or mismatched stem cell transplants. Here, we explore the biology of IL-6/IL-6R interactions and the evidence for an important role of IL-6 in mediating allograft rejection.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                30 January 2018
                2018
                : 9
                : 22
                Affiliations
                [1] 1Graduate Management Unit, Shanghai Changhai Hospital, Second Military Medical University , Shanghai, China
                [2] 2School of Pharmacy, Second Military Medical University , Shanghai, China
                [3] 3Department of Orthopedics, Shanghai Changhai Hospital, Second Military Medical University , Shanghai, China
                [4] 4China-South Korea Bioengineering Center , Shanghai, China
                [5] 5Orthopedic Basic and Translational Research Center , Jiangyin, China
                Author notes

                Edited by: Patrizia Ballerini, Università degli Studi “G. d’Annunzio” Chieti – Pescara, Italy

                Reviewed by: Satish Ramalingam, SRM University, India; Antonio Recchiuti, Università degli Studi “G. d’Annunzio” Chieti – Pescara, Italy

                *Correspondence: Chen Xiao, sirchenxiao@ 123456126.com Su Jiacan, drsujiacan@ 123456163.com

                These authors have contributed equally to this work.

                This article was submitted to Inflammation Pharmacology, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2018.00022
                5797611
                29441015
                17c9c3a0-4616-489c-89e4-1d3867225548
                Copyright © 2018 Xin, Jin, Chao, Zheng, Liehu, Panpan, Weizong, Xiao, Qingjie, Honggang, Longjuan, Xiao and Jiacan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 25 July 2017
                : 08 January 2018
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 43, Pages: 12, Words: 0
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                rps5,matrine derivative,rankl,osteoclasts,akt pathway
                Pharmacology & Pharmaceutical medicine
                rps5, matrine derivative, rankl, osteoclasts, akt pathway

                Comments

                Comment on this article