18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Genetic Basis for Altered Blood Vessel Function in Disease: Large Artery Stiffening

      review-article
      Vascular Health and Risk Management
      Dove Medical Press
      arterial stiffness, genes, polymorphism, extracellular matrix proteins

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The progressive stiffening of the large arteries in humans that occurs during aging constitutes a potential risk factor for increased cardiovascular morbidity and mortality, and is accompanied by an elevation in systolic blood pressure and pulse pressure. While the underlying basis for these changes remains to be fully elucidated, factors that are able to influence the structure and composition of the extracellular matrix and the way it interacts with arterial smooth muscle cells could profoundly affect the properties of the large arteries. Thus, while age and sex represent important factors contributing to large artery stiffening, the variation in growth-stimulating factors and those that modulate extracellular production and homeostasis are also being increasingly recognized to play a key role in the process. Therefore, elucidating the contribution that genetic variation makes to large artery stiffening could ultimately provide the basis for clinical strategies designed to regulate the process for therapeutic benefit.

          Related collections

          Most cited references131

          • Record: found
          • Abstract: found
          • Article: not found

          Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques.

          Dysregulated extracellular matrix (ECM) metabolism may contribute to vascular remodeling during the development and complication of human atherosclerotic lesions. We investigated the expression of matrix metalloproteinases (MMPs), a family of enzymes that degrade ECM components in human atherosclerotic plaques (n = 30) and in uninvolved arterial specimens (n = 11). We studied members of all three MMP classes (interstitial collagenase, MMP-1; gelatinases, MMP-2 and MMP-9; and stromelysin, MMP-3) and their endogenous inhibitors (TIMPs 1 and 2) by immunocytochemistry, zymography, and immunoprecipitation. Normal arteries stained uniformly for 72-kD gelatinase and TIMPs. In contrast, plaques' shoulders and regions of foam cell accumulation displayed locally increased expression of 92-kD gelatinase, stromelysin, and interstitial collagenase. However, the mere presence of MMP does not establish their catalytic capacity, as the zymogens lack activity, and TIMPs may block activated MMPs. All plaque extracts contained activated forms of gelatinases determined zymographically and by degradation of 3H-collagen type IV. To test directly whether atheromata actually contain active matrix-degrading enzymes in situ, we devised a method which allows the detection and microscopic localization of MMP enzymatic activity directly in tissue sections. In situ zymography revealed gelatinolytic and caseinolytic activity in frozen sections of atherosclerotic but not of uninvolved arterial tissues. The MMP inhibitors, EDTA and 1,10-phenanthroline, as well as recombinant TIMP-1, reduced these activities which colocalized with regions of increased immunoreactive MMP expression, i.e., the shoulders, core, and microvasculature of the plaques. Focal overexpression of activated MMP may promote destabilization and complication of atherosclerotic plaques and provide novel targets for therapeutic intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells.

            Endothelium-derived relaxing factor has been recently identified as nitric oxide. The purpose of this study was to determine if vasodilator drugs that generate nitric oxide inhibit vascular smooth muscle mitogenesis and proliferation in culture. Three chemically dissimilar vasodilators, sodium nitroprusside, S-nitroso-N-acetylpenicillamine and isosorbide dinitrate, dose-dependently inhibited serum-induced thymidine incorporation by rat aortic smooth muscle cells. Moreover, 8-bromo-cGMP mimicked the antimitogenic effect of the nitric oxide-generating drugs. The antimitogenic effect of S-nitroso-N-acetylpenicillamine was inhibited by hemoglobin and potentiated by superoxide dismutase, supporting the view that nitric oxide was the ultimate effector. Sodium nitroprusside and S-nitroso-N-acetylpenicillamine significantly decreased the proliferation of vascular smooth muscle cells. Moreover, the inhibition of mitogenesis and proliferation was shown to be independent of cell damage, as documented by several criteria of cell viability. These results suggest that endogenous nitric oxide may function as a modulator of vascular smooth muscle cell mitogenesis and proliferation, by a cGMP-mediated mechanism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Matrix metalloproteinases: a review.

              Matrix metalloproteinases (MMPs) are a family of nine or more highly homologous Zn(++)-endopeptidases that collectively cleave most if not all of the constituents of the extracellular matrix. The present review discusses in detail the primary structures and the overlapping yet distinct substrate specificities of MMPs as well as the mode of activation of the unique MMP precursors. The regulation of MMP activity at the transcriptional level and at the extracellular level (precursor activation, inhibition of activated, mature enzymes) is also discussed. A final segment of the review details the current knowledge of the involvement of MMP in specific developmental or pathological conditions, including human periodontal diseases.
                Bookmark

                Author and article information

                Journal
                Vasc Health Risk Manag
                Vascular Health and Risk Management
                Vascular Health and Risk Management
                Dove Medical Press
                1176-6344
                1178-2048
                December 2005
                December 2005
                : 1
                : 4
                : 333-344
                Affiliations
                The Cell Biology Laboratory, Baker Heart Research Institute Melbourne, Victoria, Australia
                Author notes
                Correspondence: Alex Agrotis, The Cell Biology Laboratory, Baker Heart Research Institute, St Kilda Road Central, PO Box 6492, Melbourne, Victoria 8008, Australia Tel +61 3 8532 1189 Fax +61 3 8532 1100 Email alex.agrotis@ 123456baker.edu.au
                Article
                10.2147/vhrm.2005.1.4.333
                1993961
                17315605
                17cf8664-5a79-4894-8ec7-a7a95424953d
                © 2005 Dove Medical Press Limited. All rights reserved
                History
                Categories
                Review

                Cardiovascular Medicine
                genes,arterial stiffness,extracellular matrix proteins,polymorphism
                Cardiovascular Medicine
                genes, arterial stiffness, extracellular matrix proteins, polymorphism

                Comments

                Comment on this article