0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      State-space analysis of a myocybernetic model of the lower urinary tract.

      1 , ,
      Journal of theoretical biology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To study the control of the lower urinary tract, the state space of the myocybernetic model by Bastiaanssen et al. (1996) is analysed. This model is able to respond to input signals from a neural network and includes descriptions of the muscle dynamics of both the detrusor in the bladder wall and the urethral sphincter. The equilibrium states of the model for constant input signals were found by evaluation of the roots of calculated flow curves. Two types of equilibrium states could be distinguished: (i) the inflow and the outflow of the bladder are both equal to zero and (ii) the bladder in- and outflow are both equal to a prescribed small constant flow from the ureters into the bladder. The first type of equilibrium features a very high bladder pressure, which in vivo could result in a reflux of urine into the ureters. The second type shows a constant loss of urine. For different combinations of constant input signals, several stable equilibrium states of both types were found. The neural controller should avoid these states so that the lower urinary tract fulfils either its storage or its voiding function. Therefore, the trajectory through the state space of a simulated normal filling and micturition event was evaluated here. It appeared that equilibrium states were avoided by rapid changes of the input signals. The behaviour of the model outside the normal trajectory is compared with neurologic urinary tract disorders. Several pathological behaviours are in qualitative agreement with the model predictions.

          Related collections

          Author and article information

          Journal
          J Theor Biol
          Journal of theoretical biology
          Elsevier BV
          0022-5193
          0022-5193
          Jun 07 1996
          : 180
          : 3
          Affiliations
          [1 ] Medical Informatics, Medical Faculty, Leiden University, The Netherlands.
          Article
          S0022-5193(96)90098-3
          10.1006/jtbi.1996.0098
          8759530
          17db460d-09ee-4ad7-9365-d5260d284040
          History

          Comments

          Comment on this article