78
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Regulatory activities of transposable elements: from conflicts to benefits

      , ,
      Nature Reviews Genetics
      Springer Nature

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transposable elements (TEs) are a prolific source of tightly regulated, biochemically active non-coding elements, such as transcription factor-binding sites and non-coding RNAs. Many recent studies reinvigorate the idea that these elements are pervasively co-opted for the regulation of host genes. We argue that the inherent

          Related collections

          Most cited references116

          • Record: found
          • Abstract: found
          • Article: not found

          Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells.

          The conversion of lineage-committed cells to induced pluripotent stem cells (iPSCs) by reprogramming is accompanied by a global remodeling of the epigenome, resulting in altered patterns of gene expression. Here we characterize the transcriptional reorganization of large intergenic non-coding RNAs (lincRNAs) that occurs upon derivation of human iPSCs and identify numerous lincRNAs whose expression is linked to pluripotency. Among these, we defined ten lincRNAs whose expression was elevated in iPSCs compared with embryonic stem cells, suggesting that their activation may promote the emergence of iPSCs. Supporting this, our results indicate that these lincRNAs are direct targets of key pluripotency transcription factors. Using loss-of-function and gain-of-function approaches, we found that one such lincRNA (lincRNA-RoR) modulates reprogramming, thus providing a first demonstration for critical functions of lincRNAs in the derivation of pluripotent stem cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Selfish genes, the phenotype paradigm and genome evolution.

            Natural selection operating within genomes will inevitably result in the appearance of DNAs with no phenotypic expression whose only 'function' is survival within genomes. Prokaryotic transposable elements and eukaryotic middle-repetitive sequences can be seen as such DNA's and thus no phenotypic or evolutionary function need be assigned to them.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal.

              The embryonic stem cell (ESC) transcriptional and epigenetic networks are controlled by a multilayer regulatory circuitry, including core transcription factors (TFs), posttranscriptional modifier microRNAs (miRNAs), and some other regulators. However, the role of large intergenic noncoding RNAs (lincRNAs) in this regulatory circuitry and their underlying mechanism remains undefined. Here, we demonstrate that a lincRNA, linc-RoR, may function as a key competing endogenous RNA to link the network of miRNAs and core TFs, e.g., Oct4, Sox2, and Nanog. We show that linc-RoR shares miRNA-response elements with these core TFs and that linc-RoR prevents these core TFs from miRNA-mediated suppression in self-renewing human ESC. We suggest that linc-RoR forms a feedback loop with core TFs and miRNAs to regulate ESC maintenance and differentiation. These results may provide insights into the functional interactions of the components of genetic networks during development and may lead to new therapies for many diseases. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Genetics
                Nat Rev Genet
                Springer Nature
                1471-0056
                1471-0064
                November 21 2016
                November 21 2016
                : 18
                : 2
                : 71-86
                Article
                10.1038/nrg.2016.139
                5498291
                27867194
                17dd4322-77c5-4e1c-aa3f-dfa3d0e53c51
                © 2016
                History

                Comments

                Comment on this article