3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Electric field-induced ferromagnetic resonance in a CoFeB/MgO magnetic tunnel junction under dc bias voltages

      , , , ,
      Applied Physics Letters
      AIP Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction.

          Magnetic tunnel junctions (MTJs) with ferromagnetic electrodes possessing a perpendicular magnetic easy axis are of great interest as they have a potential for realizing next-generation high-density non-volatile memory and logic chips with high thermal stability and low critical current for current-induced magnetization switching. To attain perpendicular anisotropy, a number of material systems have been explored as electrodes, which include rare-earth/transition-metal alloys, L1(0)-ordered (Co, Fe)-Pt alloys and Co/(Pd, Pt) multilayers. However, none of them so far satisfy high thermal stability at reduced dimension, low-current current-induced magnetization switching and high tunnel magnetoresistance ratio all at the same time. Here, we use interfacial perpendicular anisotropy between the ferromagnetic electrodes and the tunnel barrier of the MTJ by employing the material combination of CoFeB-MgO, a system widely adopted to produce a giant tunnel magnetoresistance ratio in MTJs with in-plane anisotropy. This approach requires no material other than those used in conventional in-plane-anisotropy MTJs. The perpendicular MTJs consisting of Ta/CoFeB/MgO/CoFeB/Ta show a high tunnel magnetoresistance ratio, over 120%, high thermal stability at dimension as low as 40 nm diameter and a low switching current of 49 microA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electric-field control of ferromagnetism.

            It is often assumed that it is not possible to alter the properties of magnetic materials once they have been prepared and put into use. For example, although magnetic materials are used in information technology to store trillions of bits (in the form of magnetization directions established by applying external magnetic fields), the properties of the magnetic medium itself remain unchanged on magnetization reversal. The ability to externally control the properties of magnetic materials would be highly desirable from fundamental and technological viewpoints, particularly in view of recent developments in magnetoelectronics and spintronics. In semiconductors, the conductivity can be varied by applying an electric field, but the electrical manipulation of magnetism has proved elusive. Here we demonstrate electric-field control of ferromagnetism in a thin-film semiconducting alloy, using an insulating-gate field-effect transistor structure. By applying electric fields, we are able to vary isothermally and reversibly the transition temperature of hole-induced ferromagnetism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spin-torque diode effect in magnetic tunnel junctions.

              There is currently much interest in the development of 'spintronic' devices, in which harnessing the spins of electrons (rather than just their charges) is anticipated to provide new functionalities that go beyond those possible with conventional electronic devices. One widely studied example of an effect that has its roots in the electron's spin degree of freedom is the torque exerted by a spin-polarized electric current on the spin moment of a nanometre-scale magnet. This torque causes the magnetic moment to rotate at potentially useful frequencies. Here we report a very different phenomenon that is also based on the interplay between spin dynamics and spin-dependent transport, and which arises from unusual diode behaviour. We show that the application of a small radio-frequency alternating current to a nanometre-scale magnetic tunnel junction can generate a measurable direct-current (d.c.) voltage across the device when the frequency is resonant with the spin oscillations that arise from the spin-torque effect: at resonance (which can be tuned by an external magnetic field), the structure exhibits different resistance states depending on the direction of the current. This behaviour is markedly different from that of a conventional semiconductor diode, and could form the basis of a nanometre-scale radio-frequency detector in telecommunication circuits.
                Bookmark

                Author and article information

                Journal
                Applied Physics Letters
                Appl. Phys. Lett.
                AIP Publishing
                0003-6951
                1077-3118
                December 15 2014
                December 15 2014
                : 105
                : 24
                : 242409
                Article
                10.1063/1.4904956
                17df5dd3-1691-4194-9e72-7854cc0e07af
                © 2014
                History

                Comments

                Comment on this article