4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Leukocyte cell-derived chemotaxin 2 inhibits development of atherosclerosis in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Leukocyte cell-derived chemotaxin 2 (LECT2), a multifunctional hepatokine, is involved in many pathological conditions. However, its role in atherosclerosis remains undefined. In this study, we administered vehicle or LECT2 to male Apoe -/- mice fed a Western diet for 15 weeks. Atherosclerotic lesions were visualized and quantified with Oil-red O and hematoxylin staining. The mRNA expression levels of MCP-1, MMP-1, IL-8, IL-1β, and TNF-α were analyzed by quantitative real-time polymerase chain reaction. Serum TNF-α, IL-1β, IL-8, MCP-1, and MMP-1 concentrations were measured by enzyme-linked immunosorbent assay. CD68, CD31, and α-SMA, markers of macrophages, endothelial cells, and smooth muscle cells, respectively, were detected by immunostaining. Results showed that LECT2 reduced total cholesterol and low-density lipoprotein concentrations in serum and inhibited the development of atherosclerotic lesions, accompanied by reductions in inflammatory cytokines and lower MCP-1, MMP-1, TNF-α, IL-8, and IL-1β mRNA abundance. Furthermore, LECT2 decreased CD68, but increased α-SMA in atherosclerotic lesions, suggesting an increase in smooth muscle cells and reduction in macrophages. In summary, LECT2 inhibited the development of atherosclerosis in mice, accompanied by reduced serum total cholesterol concentration and lower inflammatory responses.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Smooth muscle cell fate and plasticity in atherosclerosis

          Current knowledge suggests that intimal smooth muscle cells (SMCs) in native atherosclerotic plaque derive mainly from the medial arterial layer. During this process, SMCs undergo complex structural and functional changes giving rise to a broad spectrum of phenotypes. Classically, intimal SMCs are described as dedifferentiated/synthetic SMCs, a phenotype characterized by reduced expression of contractile proteins. Intimal SMCs are considered to have a beneficial role by contributing to the fibrous cap and thereby stabilizing atherosclerotic plaque. However, intimal SMCs can lose their properties to such an extent that they become hard to identify, contribute significantly to the foam cell population, and acquire inflammatory-like cell features. This review highlights mechanisms of SMC plasticity in different stages of native atherosclerotic plaque formation, their potential for monoclonal or oligoclonal expansion, as well as recent findings demonstrating the underestimated deleterious role of SMCs in this disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vascular smooth muscle cell in atherosclerosis.

            Vascular smooth muscle cells (VSMCs) exhibit phenotypic and functional plasticity in order to respond to vascular injury. In case of the vessel damage, VSMCs are able to switch from the quiescent 'contractile' phenotype to the 'proinflammatory' phenotype. This change is accompanied by decrease in expression of smooth muscle (SM)-specific markers responsible for SM contraction and production of proinflammatory mediators that modulate induction of proliferation and chemotaxis. Indeed, activated VSMCs could efficiently proliferate and migrate contributing to the vascular wall repair. However, in chronic inflammation that occurs in atherosclerosis, arterial VSMCs become aberrantly regulated and this leads to increased VSMC dedifferentiation and extracellular matrix formation in plaque areas. Proatherosclerotic switch in VSMC phenotype is a complex and multistep mechanism that may be induced by a variety of proinflammatory stimuli and hemodynamic alterations. Disturbances in hemodynamic forces could initiate the proinflammatory switch in VSMC phenotype even in pre-clinical stages of atherosclerosis. Proinflammatory signals play a crucial role in further dedifferentiation of VSMCs in affected vessels and propagation of pathological vascular remodelling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemokines in the pathogenesis of vascular disease.

              Our increasing appreciation of the importance of inflammation in vascular disease has focused attention on the molecules that direct the migration of leukocytes from the blood stream to the vessel wall. In this review, we summarize roles of the chemokines, a family of small secreted proteins that selectively recruit monocytes, neutrophils, and lymphocytes to sites of vascular injury, inflammation, and developing atherosclerosis. Chemokines induce chemotaxis through the activation of G-protein-coupled receptors, and the receptors that a given leukocyte expresses determines the chemokines to which it will respond. Monocyte chemoattractant protein 1 (MCP-1), acting through its receptor CCR2, appears to play an early and important role in the recruitment of monocytes to atherosclerotic lesions and in the formation of intimal hyperplasia after arterial injury. Acute thrombosis is an often fatal complication of atherosclerotic plaque rupture, and recent evidence suggests that MCP-1 contributes to thrombin generation and thrombus formation by generating tissue factor. Because of their critical roles in monocyte recruitment in vascular and nonvascular diseases, MCP-1 and CCR2 have become important therapeutic targets, and efforts are underway to develop potent and specific antagonists of these and related chemokines.
                Bookmark

                Author and article information

                Journal
                Zool Res
                Zool Res
                DWXY
                zoological research
                Zoological Research
                Science Press (16 Donghuangchenggen Beijie, Beijing 100717, China )
                2095-8137
                18 July 2019
                : 40
                : 4
                : 317-323
                Affiliations
                [1 ]Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang 310009, China
                [2 ]Department of Cardiology, the Affiliated Hospital of Medical School of Ningbo University, Ningbo Zhejiang 315010, China
                [3 ]Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo Zhejiang 315832, China
                Author notes
                Article
                2095-8137(2019)04-0317-07
                10.24272/j.issn.2095-8137.2019.030
                6680125
                31310065
                17e2988e-20b1-4dde-ab3c-34879a2868ba
                © 2019. Editorial Office of Zoological Research, Kunming Institute of Zoology, Chinese Academy of Sciences

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 01 April 2019
                : 27 May 2019
                Funding
                This project was supported by the Program for the National Natural Science Foundation of China (31772876), Ningbo Municipal Bureau of Science and Technology (2018A610389), Scientific Innovation Team Project of Ningbo (2015C110018), and K.C. Wong Magna Fund in Ningbo University
                Categories
                Reports

                leukocyte cell-derived chemotaxin 2 (lect2),atherosclerosis,inflammation,lipid metabolism

                Comments

                Comment on this article