89
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Next Generation Sequencing Technologies: The Doorway to the Unexplored Genomics of Non-Model Plants

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Non-model plants i.e., the species which have one or all of the characters such as long life cycle, difficulty to grow in the laboratory or poor fecundity, have been schemed out of sequencing projects earlier, due to high running cost of Sanger sequencing. Consequently, the information about their genomics and key biological processes are inadequate. However, the advent of fast and cost effective next generation sequencing (NGS) platforms in the recent past has enabled the unearthing of certain characteristic gene structures unique to these species. It has also aided in gaining insight about mechanisms underlying processes of gene expression and secondary metabolism as well as facilitated development of genomic resources for diversity characterization, evolutionary analysis and marker assisted breeding even without prior availability of genomic sequence information. In this review we explore how different Next Gen Sequencing platforms, as well as recent advances in NGS based high throughput genotyping technologies are rewarding efforts on de-novo whole genome/transcriptome sequencing, development of genome wide sequence based markers resources for improvement of non-model crops that are less costly than phenotyping.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Natural products and plant disease resistance.

          R Dixon (2001)
          Plants elaborate a vast array of natural products, many of which have evolved to confer selective advantage against microbial attack. Recent advances in molecular technology, aided by the enormous power of large-scale genomics initiatives, are leading to a more complete understanding of the enzymatic machinery that underlies the often complex pathways of plant natural product biosynthesis. Meanwhile, genetic and reverse genetic approaches are providing evidence for the importance of natural products in host defence. Metabolic engineering of natural product pathways is now a feasible strategy for enhancement of plant disease resistance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The genome of the pear ( Pyrus bretschneideri Rehd.)

            The draft genome of the pear ( Pyrus bretschneideri ) using a combination of BAC-by-BAC and next-generation sequencing is reported. A 512.0-Mb sequence corresponding to 97.1% of the estimated genome size of this highly heterozygous species is assembled with 194× coverage. High-density genetic maps comprising 2005 SNP markers anchored 75.5% of the sequence to all 17 chromosomes. The pear genome encodes 42,812 protein-coding genes, and of these, ∼28.5% encode multiple isoforms. Repetitive sequences of 271.9 Mb in length, accounting for 53.1% of the pear genome, are identified. Simulation of eudicots to the ancestor of Rosaceae has reconstructed nine ancestral chromosomes. Pear and apple diverged from each other ∼5.4–21.5 million years ago, and a recent whole-genome duplication (WGD) event must have occurred 30–45 MYA prior to their divergence, but following divergence from strawberry. When compared with the apple genome sequence, size differences between the apple and pear genomes are confirmed mainly due to the presence of repetitive sequences predominantly contributed by transposable elements (TEs), while genic regions are similar in both species. Genes critical for self-incompatibility, lignified stone cells (a unique feature of pear fruit), sorbitol metabolism, and volatile compounds of fruit have also been identified. Multiple candidate SFB genes appear as tandem repeats in the S -locus region of pear; while lignin synthesis-related gene family expansion and highly expressed gene families of HCT , C3′H , and CCOMT contribute to high accumulation of both G-lignin and S-lignin. Moreover, alpha-linolenic acid metabolism is a key pathway for aroma in pear fruit.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Twenty-five years of quantitative PCR for gene expression analysis.

              Following its invention 25 years ago, PCR has been adapted for numerous molecular biology applications. Gene expression analysis by reverse-transcription quantitative PCR (RT-qPCR) has been a key enabling technology of the post-genome era. Since the founding of BioTechniques, this journal has been a resource for the improvements in qPCR technology, experimental design, and data analysis. qPCR and, more specifically, real-time qPCR has become a routine and robust approach for measuring the expression of genes of interest, validating microarray experiments, and monitoring biomarkers. The use of real-time qPCR has nearly supplanted other approaches (e.g., Northern blotting, RNase protection assays). This review examines the current state of qPCR for gene expression analysis now that the method has reached a mature stage of development and implementation. Specifically, the different fluorescent reporter technologies of real-time qPCR are discussed as well as the selection of endogenous controls. The conceptual framework for data analysis methods is also presented to demystify these analysis techniques. The future of qPCR remains bright as the technology becomes more rapid, cost-effective, easier to use, and capable of higher throughput.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                16 December 2015
                2015
                : 6
                : 1074
                Affiliations
                [1] 1Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, India
                [2] 2Department of Plant Science and Biotechnology, Imo State University Owerri, Nigeria
                Author notes

                Edited by: Rajeev K. Varshney, International Crops Research Institute for the Semi-Arid Tropics, India

                Reviewed by: Xiyin Wang, North China University of Science and Technology, China; Dongying Gao, University of Georgia, USA

                This article was submitted to Plant Genetics and Genomics, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2015.01074
                4679907
                26734016
                180694af-b440-4daa-9237-b5177a7d6f35
                Copyright © 2015 Unamba, Nag and Sharma.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 August 2015
                : 16 November 2015
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 109, Pages: 16, Words: 11127
                Funding
                Funded by: Council of Scientific and Industrial Research 10.13039/501100001412
                Funded by: Department of Biotechnology, Ministry of Science and Technology 10.13039/501100001407
                Funded by: The World Academy of Sciences 10.13039/501100002222
                Categories
                Plant Science
                Review

                Plant science & Botany
                non-model,genomics,next generation sequencing,whole genome,transcriptome
                Plant science & Botany
                non-model, genomics, next generation sequencing, whole genome, transcriptome

                Comments

                Comment on this article