Mycobacteria produce two unique families of cytoplasmic polymethylated polysaccharides - the methylglucose lipopolysaccharides (MGLPs) and the methylmannose polysaccharides (MMPs) - the physiological functions of which are still poorly defined. Towards defining the roles of these polysaccharides in mycobacterial physiology, we generated knock-out mutations of genes in their putative biosynthetic pathways.
We report here on the characterization of the Rv1208 protein of Mycobacterium tuberculosis and its ortholog in Mycobacterium smegmatis (MSMEG_5084) as the enzymes responsible for the transfer of the first glucose residue of MGLPs. Disruption of MSMEG_5084 in M. smegmatis resulted in a dramatic decrease in MGLP synthesis directly attributable to the almost complete abolition of glucosyl-3-phosphoglycerate synthase activity in this strain. Synthesis of MGLPs in the mutant was restored upon complementation with wild-type copies of the Rv1208 gene from M. tuberculosis or MSMEG_5084 from M. smegmatis.