24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Initiation of Methylglucose Lipopolysaccharide Biosynthesis in Mycobacteria

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Mycobacteria produce two unique families of cytoplasmic polymethylated polysaccharides - the methylglucose lipopolysaccharides (MGLPs) and the methylmannose polysaccharides (MMPs) - the physiological functions of which are still poorly defined. Towards defining the roles of these polysaccharides in mycobacterial physiology, we generated knock-out mutations of genes in their putative biosynthetic pathways.

          Methodology/Principal Findings

          We report here on the characterization of the Rv1208 protein of Mycobacterium tuberculosis and its ortholog in Mycobacterium smegmatis (MSMEG_5084) as the enzymes responsible for the transfer of the first glucose residue of MGLPs. Disruption of MSMEG_5084 in M. smegmatis resulted in a dramatic decrease in MGLP synthesis directly attributable to the almost complete abolition of glucosyl-3-phosphoglycerate synthase activity in this strain. Synthesis of MGLPs in the mutant was restored upon complementation with wild-type copies of the Rv1208 gene from M. tuberculosis or MSMEG_5084 from M. smegmatis.

          Conclusions/Significance

          This is the first evidence linking Rv1208 to MGLP biosynthesis. Thus, the first step in the initiation of MGLP biosynthesis in mycobacteria has been defined, and subsequent steps can be inferred.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Genes required for mycobacterial growth defined by high density mutagenesis.

          Despite over a century of research, tuberculosis remains a leading cause of infectious death worldwide. Faced with increasing rates of drug resistance, the identification of genes that are required for the growth of this organism should provide new targets for the design of antimycobacterial agents. Here, we describe the use of transposon site hybridization (TraSH) to comprehensively identify the genes required by the causative agent, Mycobacterium tuberculosis, for optimal growth. These genes include those that can be assigned to essential pathways as well as many of unknown function. The genes important for the growth of M. tuberculosis are largely conserved in the degenerate genome of the leprosy bacillus, Mycobacterium leprae, indicating that non-essential functions have been selectively lost since this bacterium diverged from other mycobacteria. In contrast, a surprisingly high proportion of these genes lack identifiable orthologues in other bacteria, suggesting that the minimal gene set required for survival varies greatly between organisms with different evolutionary histories.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New use of BCG for recombinant vaccines.

            BCG, a live attenuated tubercle bacillus, is the most widely used vaccine in the world and is also a useful vaccine vehicle for delivering protective antigens of multiple pathogens. Extrachromosomal and integrative expression vectors carrying the regulatory sequences for major BCG heat-shock proteins have been developed to allow expression of foreign antigens in BCG. These recombinant BCG strains can elicit long-lasting humoral and cellular immune responses to foreign antigens in mice.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Capsular glucan and intracellular glycogen of Mycobacterium tuberculosis: biosynthesis and impact on the persistence in mice.

              Mycobacterium tuberculosis and other pathogenic mycobacterial species produce large amounts of a glycogen-like alpha-glucan that represents the major polysaccharide of their outermost capsular layer. To determine the role of the surface-exposed glucan in the physiology and virulence of these bacteria, orthologues of the glg genes involved in the biosynthesis of glycogen in Escherichia coli were identified in M. tuberculosis H37Rv and inactivated by allelic replacement. Biochemical analyses of the mutants and complemented strains indicated that the synthesis of glucan and glycogen involves the alpha-1,4-glucosyltransferases Rv3032 and GlgA (Rv1212c), the ADP-glucose pyrophosphorylase GlgC (Rv1213) and the branching enzyme GlgB (Rv1326c). Disruption of glgC reduced by half the glucan and glycogen contents of M. tuberculosis, whereas the inactivation of glgA and Rv3032 affected the production of capsular glucan and glycogen, respectively. Attempts to disrupt Rv3032 in the glgA mutant were unsuccessful, suggesting that a functional copy of at least one of the two alpha-1,4-glucosyltransferases is required for growth. Importantly, the glgA mutant was impaired in its ability to persist in mice, suggesting a role for the capsular glucan in the persistence phase of infection. Unexpectedly, GlgB was found to be an essential enzyme.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2009
                7 May 2009
                : 4
                : 5
                : e5447
                Affiliations
                [1 ]Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
                [2 ]Département «Mécanismes Moléculaires des Infections Mycobactériennes», Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et Biologie Structurale (UMR 5089), Université de Toulouse III, Toulouse, France
                Baylor College of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: DK PJB MJ. Performed the experiments: DK HP GLM MR MEG. Analyzed the data: MR GP PJB MJ. Contributed reagents/materials/analysis tools: VV. Wrote the paper: MJ.

                Article
                09-PONE-RA-08660R1
                10.1371/journal.pone.0005447
                2674218
                19421329
                180e03c1-4a28-48d8-b60f-c1275fe7cc2b
                Kaur et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 11 February 2009
                : 10 April 2009
                Page count
                Pages: 7
                Categories
                Research Article
                Biochemistry
                Microbiology
                Infectious Diseases/Bacterial Infections

                Uncategorized
                Uncategorized

                Comments

                Comment on this article