20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Single-cell multiomics: technologies and data analysis methods

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Advances in single-cell isolation and barcoding technologies offer unprecedented opportunities to profile DNA, mRNA, and proteins at a single-cell resolution. Recently, bulk multiomics analyses, such as multidimensional genomic and proteogenomic analyses, have proven beneficial for obtaining a comprehensive understanding of cellular events. This benefit has facilitated the development of single-cell multiomics analysis, which enables cell type-specific gene regulation to be examined. The cardinal features of single-cell multiomics analysis include (1) technologies for single-cell isolation, barcoding, and sequencing to measure multiple types of molecules from individual cells and (2) the integrative analysis of molecules to characterize cell types and their functions regarding pathophysiological processes based on molecular signatures. Here, we summarize the technologies for single-cell multiomics analyses (mRNA-genome, mRNA-DNA methylation, mRNA-chromatin accessibility, and mRNA-protein) as well as the methods for the integrative analysis of single-cell multiomics data.

          Single-cell profiling: understanding disease at the cellular level

          The expansion of single-cell profiling technologies will provide unprecedented insights into the molecular mechanisms inherent in disease. Novel technologies known collectively as ‘single-cell multiomics’ enable systematic, high-resolution profiling of DNA, RNA and proteins in individual cells. This provides valuable data about gene regulation and molecular populations, and cellular processes during disease development and progression. Daehee Hwang and co-workers at Seoul National University, Seoul, South Korea, reviewed existing single-cell multiomics technologies and highlighted ways to integrate the data generated. Analytical features of multiomics allow scientists to isolate, sequence and label (or ‘barcode’) multiple molecules in single cells. Different sequencing techniques can be used for different purposes, such as exploring gene mutation coverage or measuring RNA transcripts. Combining these sequencing data will help identify links between significant features during disease.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          Comprehensive Integration of Single-Cell Data

          Single-cell transcriptomics has transformed our ability to characterize cell states, but deep biological understanding requires more than a taxonomic listing of clusters. As new methods arise to measure distinct cellular modalities, a key analytical challenge is to integrate these datasets to better understand cellular identity and function. Here, we develop a strategy to "anchor" diverse datasets together, enabling us to integrate single-cell measurements not only across scRNA-seq technologies, but also across different modalities. After demonstrating improvement over existing methods for integrating scRNA-seq data, we anchor scRNA-seq experiments with scATAC-seq to explore chromatin differences in closely related interneuron subsets and project protein expression measurements onto a bone marrow atlas to characterize lymphocyte populations. Lastly, we harmonize in situ gene expression and scRNA-seq datasets, allowing transcriptome-wide imputation of spatial gene expression patterns. Our work presents a strategy for the assembly of harmonized references and transfer of information across datasets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Comprehensive molecular portraits of human breast tumors

            Summary We analyzed primary breast cancers by genomic DNA copy number arrays, DNA methylation, exome sequencing, mRNA arrays, microRNA sequencing and reverse phase protein arrays. Our ability to integrate information across platforms provided key insights into previously-defined gene expression subtypes and demonstrated the existence of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular heterogeneity. Somatic mutations in only three genes (TP53, PIK3CA and GATA3) occurred at > 10% incidence across all breast cancers; however, there were numerous subtype-associated and novel gene mutations including the enrichment of specific mutations in GATA3, PIK3CA and MAP3K1 with the Luminal A subtype. We identified two novel protein expression-defined subgroups, possibly contributed by stromal/microenvironmental elements, and integrated analyses identified specific signaling pathways dominant in each molecular subtype including a HER2/p-HER2/HER1/p-HER1 signature within the HER2-Enriched expression subtype. Comparison of Basal-like breast tumors with high-grade Serous Ovarian tumors showed many molecular commonalities, suggesting a related etiology and similar therapeutic opportunities. The biologic finding of the four main breast cancer subtypes caused by different subsets of genetic and epigenetic abnormalities raises the hypothesis that much of the clinically observable plasticity and heterogeneity occurs within, and not across, these major biologic subtypes of breast cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SCENIC: Single-cell regulatory network inference and clustering

              Although single-cell RNA-seq is revolutionizing biology, data interpretation remains a challenge. We present SCENIC for the simultaneous reconstruction of gene regulatory networks and identification of cell states. We apply SCENIC to a compendium of single-cell data from tumors and brain, and demonstrate that the genomic regulatory code can be exploited to guide the identification of transcription factors and cell states. SCENIC provides critical biological insights into the mechanisms driving cellular heterogeneity.
                Bookmark

                Author and article information

                Contributors
                daehee@snu.ac.kr
                Journal
                Exp Mol Med
                Exp Mol Med
                Experimental & Molecular Medicine
                Nature Publishing Group UK (London )
                1226-3613
                2092-6413
                15 September 2020
                15 September 2020
                September 2020
                : 52
                : 9
                : 1428-1442
                Affiliations
                GRID grid.31501.36, ISNI 0000 0004 0470 5905, School of Biological Sciences, , Seoul National University, ; Seoul, 08826 Republic of Korea
                Article
                420
                10.1038/s12276-020-0420-2
                8080692
                32929225
                1813e75b-2d24-4815-a617-d9851437452b
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 2 December 2019
                : 14 February 2020
                : 28 February 2020
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100003725, National Research Foundation of Korea (NRF);
                Award ID: NRF-2019M3A9B6066967
                Award ID: 2019R1A6A1A10073437
                Award Recipient :
                Categories
                Review Article
                Custom metadata
                © The Author(s) 2020

                Molecular medicine
                transcriptomics,proteomics,data integration
                Molecular medicine
                transcriptomics, proteomics, data integration

                Comments

                Comment on this article