142
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microbiologists conducting surveys of bacterial and archaeal diversity often require comparative alignments of thousands of 16S rRNA genes collected from a sample. The computational resources and bioinformatics expertise required to construct such an alignment has inhibited high-throughput analysis. It was hypothesized that an online tool could be developed to efficiently align thousands of 16S rRNA genes via the NAST (Nearest Alignment Space Termination) algorithm for creating multiple sequence alignments (MSA). The tool was implemented with a web-interface at http://greengenes.lbl.gov/NAST. Each user-submitted sequence is compared with Greengenes' ‘Core Set’, comprising ∼10 000 aligned non-chimeric sequences representative of the currently recognized diversity among bacteria and archaea. User sequences are oriented and paired with their closest match in the Core Set to serve as a template for inserting gap characters. Non-16S data (sequence from vector or surrounding genomic regions) are conveniently removed in the returned alignment. From the resulting MSA, distance matrices can be calculated for diversity estimates and organisms can be classified by taxonomy. The ability to align and categorize large sequence sets using a simple interface has enabled researchers with various experience levels to obtain bacterial and archaeal community profiles.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: not found
          • Article: not found

          MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment.

          S. KUMAR (2004)
          With its theoretical basis firmly established in molecular evolutionary and population genetics, the comparative DNA and protein sequence analysis plays a central role in reconstructing the evolutionary histories of species and multigene families, estimating rates of molecular evolution, and inferring the nature and extent of selective forces shaping the evolution of genes and genomes. The scope of these investigations has now expanded greatly owing to the development of high-throughput sequencing techniques and novel statistical and computational methods. These methods require easy-to-use computer programs. One such effort has been to produce Molecular Evolutionary Genetics Analysis (MEGA) software, with its focus on facilitating the exploration and analysis of the DNA and protein sequence variation from an evolutionary perspective. Currently in its third major release, MEGA3 contains facilities for automatic and manual sequence alignment, web-based mining of databases, inference of the phylogenetic trees, estimation of evolutionary distances and testing evolutionary hypotheses. This paper provides an overview of the statistical methods, computational tools, and visual exploration modules for data input and the results obtainable in MEGA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Bioperl toolkit: Perl modules for the life sciences.

            The Bioperl project is an international open-source collaboration of biologists, bioinformaticians, and computer scientists that has evolved over the past 7 yr into the most comprehensive library of Perl modules available for managing and manipulating life-science information. Bioperl provides an easy-to-use, stable, and consistent programming interface for bioinformatics application programmers. The Bioperl modules have been successfully and repeatedly used to reduce otherwise complex tasks to only a few lines of code. The Bioperl object model has been proven to be flexible enough to support enterprise-level applications such as EnsEMBL, while maintaining an easy learning curve for novice Perl programmers. Bioperl is capable of executing analyses and processing results from programs such as BLAST, ClustalW, or the EMBOSS suite. Interoperation with modules written in Python and Java is supported through the evolving BioCORBA bridge. Bioperl provides access to data stores such as GenBank and SwissProt via a flexible series of sequence input/output modules, and to the emerging common sequence data storage format of the Open Bioinformatics Database Access project. This study describes the overall architecture of the toolkit, the problem domains that it addresses, and gives specific examples of how the toolkit can be used to solve common life-sciences problems. We conclude with a discussion of how the open-source nature of the project has contributed to the development effort.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparative metagenomics of microbial communities.

              The species complexity of microbial communities and challenges in culturing representative isolates make it difficult to obtain assembled genomes. Here we characterize and compare the metabolic capabilities of terrestrial and marine microbial communities using largely unassembled sequence data obtained by shotgun sequencing DNA isolated from the various environments. Quantitative gene content analysis reveals habitat-specific fingerprints that reflect known characteristics of the sampled environments. The identification of environment-specific genes through a gene-centric comparative analysis presents new opportunities for interpreting and diagnosing environments.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Research
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                01 July 2006
                01 July 2006
                14 July 2006
                : 34
                : Web Server issue
                : W394-W399
                Affiliations
                1Lawrence Berkeley National Laboratory, Center for Environmental Biotechnology Berkeley, CA, USA
                2DOE Joint Genome Institute, Microbial Ecology Program Walnut Creek, CA, USA
                3Danish Genome Institute Aarhus, Denmark
                4Lawrence Berkeley National Laboratory, Virtual Institute for Microbial Stress and Survival Berkeley, CA, USA
                5University of California, Quantitative Biomedical Research Berkeley, CA, USA
                Author notes
                *To whom correspondence should be addressed. Email: tdesantis@ 123456lbl.gov

                *Correspondence may also be addressed to G. L. Andersen. Tel: +1 510 495 2795; Fax: +1 510 486 7152; Email: GLAndersen@ 123456lbl.gov

                Article
                10.1093/nar/gkl244
                1538769
                16845035
                18362228-f8f1-4ffd-9164-4a7aabe60c56
                © The Author 2006. Published by Oxford University Press. All rights reserved

                The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oxfordjournals.org

                History
                : 14 February 2006
                : 08 March 2006
                : 29 March 2006
                Categories
                Article

                Genetics
                Genetics

                Comments

                Comment on this article