30
views
1
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Overanxious and underslept

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Are you feeling anxious? Did you sleep poorly last night? Sleep disruption is a recognized feature of all anxiety disorders. Here, we investigate the basic brain mechanisms underlying the anxiogenic impact of sleep loss. Additionally, we explore whether subtle, societally common reductions in sleep trigger elevated next-day anxiety. Finally, we examine what it is about sleep, physiologically, that provides such an overnight anxiety-reduction benefit. We demonstrate that the anxiogenic impact of sleep loss is linked to impaired medial prefrontal cortex activity and associated connectivity with extended limbic regions. In contrast, non-rapid eye movement (NREM) slow-wave oscillations offer an ameliorating, anxiolytic benefit on these brain networks following sleep. Of societal relevance, we establish that even modest night-to-night reductions in sleep across the population predict consequential day-to-day increases in anxiety. These findings help contribute to an emerging framework explaining the intimate link between sleep and anxiety and further highlight the prospect of non-rapid eye movement sleep as a therapeutic target for meaningfully reducing anxiety.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Emotional processing in anterior cingulate and medial prefrontal cortex.

          Negative emotional stimuli activate a broad network of brain regions, including the medial prefrontal (mPFC) and anterior cingulate (ACC) cortices. An early influential view dichotomized these regions into dorsal-caudal cognitive and ventral-rostral affective subdivisions. In this review, we examine a wealth of recent research on negative emotions in animals and humans, using the example of fear or anxiety, and conclude that, contrary to the traditional dichotomy, both subdivisions make key contributions to emotional processing. Specifically, dorsal-caudal regions of the ACC and mPFC are involved in appraisal and expression of negative emotion, whereas ventral-rostral portions of the ACC and mPFC have a regulatory role with respect to limbic regions involved in generating emotional responses. Moreover, this new framework is broadly consistent with emerging data on other negative and positive emotions. Published by Elsevier Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neurobiology of emotion perception I: The neural basis of normal emotion perception.

            There is at present limited understanding of the neurobiological basis of the different processes underlying emotion perception. We have aimed to identify potential neural correlates of three processes suggested by appraisalist theories as important for emotion perception: 1) the identification of the emotional significance of a stimulus; 2) the production of an affective state in response to 1; and 3) the regulation of the affective state. In a critical review, we have examined findings from recent animal, human lesion, and functional neuroimaging studies. Findings from these studies indicate that these processes may be dependent upon the functioning of two neural systems: a ventral system, including the amygdala, insula, ventral striatum, and ventral regions of the anterior cingulate gyrus and prefrontal cortex, predominantly important for processes 1 and 2 and automatic regulation of emotional responses; and a dorsal system, including the hippocampus and dorsal regions of anterior cingulate gyrus and prefrontal cortex, predominantly important for process 3. We suggest that the extent to which a stimulus is identified as emotive and is associated with the production of an affective state may be dependent upon levels of activity within these two neural systems.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The global burden of mental disorders: An update from the WHO World Mental Health (WMH) Surveys

                Bookmark

                Author and article information

                Journal
                Nature Human Behaviour
                Nat Hum Behav
                Springer Science and Business Media LLC
                2397-3374
                November 4 2019
                Article
                10.1038/s41562-019-0754-8
                31685950
                1846559f-4145-41f2-aca4-99c1704d9fb5
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article