67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fetal Sex Modulates Developmental Response to Maternal Malnutrition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The incidence of obesity and metabolic diseases is dramatically high in rapidly developing countries. Causes have been related to intrinsic ethnic features with development of a thrifty genotype for adapting to food scarcity, prenatal programming by undernutrition, and postnatal exposure to obesogenic lifestyle. Observational studies in humans and experimental studies in animal models evidence that the adaptive responses of the offspring may be modulated by their sex. In the contemporary context of world globalization, the new question arising is the existence and extent of sex-related differences in developmental and metabolic traits in case of mixed-race. Hence, in the current study, using a swine model, we compared male and female fetuses that were crossbred from mothers with thrifty genotype and fathers without thrifty genotype. Female conceptuses evidence stronger protective strategies for their adequate growth and postnatal survival. In brief, both male and female fetuses developed a brain-sparing effect but female fetuses were still able to maintain the development of other viscerae than the brain (mainly liver, intestine and kidneys) at the expense of carcass development. Furthermore, these morphometric differences were reinforced by differences in nutrient availability (glucose and cholesterol) favoring female fetuses with severe developmental predicament. These findings set the basis for further studies aiming to increase the knowledge on the interaction between genetic and environmental factors in the determination of adult phenotype

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          The development of porcine models of obesity and the metabolic syndrome.

          Despite aggressive research aimed at understanding the myriad biochemical factors that are integrated to balance energy intake and expenditure to maintain normal body weight, obesity is increasing at an alarming rate, and the long-term success of prevention and intervention strategies is minimal. Because much of the scientific literature addressing obesity has originated with rodent models, there is considerable interest among researchers and funding agencies in the development of comparative animal models. Furthermore, numerous disparate results between rodent models and humans (i.e., adipsin, leptin, resistin, tumor necrosis factor-alpha, and other adipokines) have hindered the translation of rodent data into actionable technologies for humans. The pig is an exceptional restenosis model, and is emerging rapidly as a biomedical model for energy metabolism and obesity in humans because it is devoid of brown fat postnatally and because of their similar metabolic features, cardiovascular systems, and proportional organ sizes. This article highlights the current literature devoted to the development of porcine models for obesity and the metabolic syndrome, with a particular emphasis on the role of adipose tissue and adipokines in the regulation of energy balance and the inflammation associated with obesity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Placental adaptive responses and fetal programming.

            Fetal programming occurs when the normal pattern of fetal development is disrupted by an abnormal stimulus or 'insult' applied at a critical point in in utero development. This then leads to an effect, for example diabetes or hypertension, which manifests itself in adult life. As the placenta is the regulator of nutrient composition and supply from mother to fetus and the source of hormonal signals that affect maternal and fetal metabolism, appropriate development of the placenta is crucial to normal fetal development. Placental function evolves in a carefully orchestrated developmental cascade throughout gestation. Disruption of this cascade can lead to abnormal development of the placental vasculature or of the trophoblast. Timing of a developmental 'insult' will be critical in consequent placental function and hence programming of the fetus. The 'insults' that alter placental development include hypoxia and abnormal maternal nutrient status, to which the placenta may adapt by alterations in transporter expression and activity to maintain fetal growth or by epigenetic regulation of placental gene expression. Hypoxia is physiological for organogenesis and placental tissue normally exists in a relatively hypoxic environment, but intrauterine growth restriction (IUGR) and pre-eclampsia are associated with a greater degree of trophoblast hypoxia. The metabolic activity of placental mitochondria leads to oxidative stress even in normal pregnancy which is exacerbated further in IUGR, diabetic and pre-eclamptic pregnancies and may also give nitrative stress known to lead to covalent modification and hence altered activity of proteins. Hypoxia, oxidative and nitrative stress all alter placenta development and may be a general underlying mechanism that links altered placental function to fetal programming.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nutritional programming of gastrointestinal tract development. Is the pig a good model for man?

              The consequences of early-life nutritional programming in man and other mammalian species have been studied chiefly at the metabolic level. Very few studies, if any, have been performed in the gastrointestinal tract (GIT) as the target organ, but extensive GIT studies are needed since the GIT plays a key role in nutrient supply and has an impact on functions of the entire organism. The possible deleterious effects of nutritional programming at the metabolic level were discovered following epidemiological studies in human subjects, and confirmed in animal models. Investigating the impact of programming on GIT structure and function would need appropriate animal models due to ethical restrictions in the use of human subjects. The aim of the present review is to discuss the use of pigs as an animal model as a compromise between ethically acceptable animal studies and the requirement of data which can be interpolated to the human situation. In nutritional programming studies, rodents are the most frequently used model for man, but GIT development and digestive function in rodents are considerably different from those in man. In that aspect, the pig GIT is much closer to the human than that of rodents. The swine species is closely comparable with man in many nutritional and digestive aspects, and thus provides ample opportunity to be used in investigations on the consequences of nutritional programming for the GIT. In particular, the 'sow-piglets' dyad could be a useful tool to simulate the 'human mother-infant' dyad in studies which examine short-, middle- and long-term effects and is suggested as the reference model.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                6 November 2015
                2015
                : 10
                : 11
                : e0142158
                Affiliations
                [1 ]INIA, Madrid, Spain
                [2 ]University of Sassari, Sassari, Italy
                [3 ]UCM, Faculty of Veterinary, Madrid, Spain
                Xavier Bichat Medical School, INSERM-CNRS - Université Paris Diderot, FRANCE
                Author notes

                Competing Interests: There is no conflict of interest that would prejudice the information offered in the paper, excepting that AGB is a PLOS ONE Editorial Board member. However, this does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: AGB SA CO. Performed the experiments: AGB LTR SA CO RSS EGF MPS MML CGC MVG. Analyzed the data: AGB LTR SA CO. Wrote the paper: AGB LTR SA CO CGC. Revised the paper: RSS EGF MPS MML MVG.

                Article
                PONE-D-15-15061
                10.1371/journal.pone.0142158
                4636307
                26544862
                185f0309-0edc-4de3-8fab-c20f63f7fce7
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 13 April 2015
                : 19 October 2015
                Page count
                Figures: 0, Tables: 3, Pages: 11
                Funding
                The experimental work was supported by funds from the Ministry of Science and Innovation (project AGL2010-21991-C03-03) and the Ministry of Economy and Competitiveness (project AGL2013-48121-C3-2-R to AGB), co-funded by FEDER. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article