18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increased serum levels of TGFβ1 in children with localized scleroderma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          There are neither sensitive nor specific laboratory tests for measuring disease activity in localized scleroderma (LS). Monitoring is done almost exclusively by clinical assessment. Our aim was to determine whether serum concentrations of TGFβ1 are a good biomarker of disease activity in children with LS.

          Methods

          55 pediatric patients with LS were divided into sub-types according to their main lesion; morphea, generalized morphea, linear scleoderma affecting a limb or the face. The lesions were further categorized by overall clinical assessment into active, inactive, and indeterminate groups according to disease activity. Serum TGFβ1 concentration levels were measured by enzyme linked immunosorbent assay (ELISA), analyzed and correlated with disease subtypes and disease activity.

          Results

          The mean TGFβ1 concentration were significantly higher in the patient group (51393 ± 33953 pg/ml) than in the control group (9825 ± 5287 pg/ml) (P < 0.001). The mean concentration were elevated in all the disease subtypes, and did not correlate with disease duration or activity.

          Conclusion

          Serum concentration of TGFβ1 were elevated in patients with all subtypes of LS irrespective of clinical disease activity. Although TGFβ1 may play an important role in the pathogenesis of local skin fibrosis, circulating blood levels of molecules known to act locally may not be useful biomarkers of disease activity.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Stimulation of the chemotactic migration of human fibroblasts by transforming growth factor beta

          Transforming growth factor beta (TGF-beta) is a potent chemoattractant in vitro for human dermal fibroblasts. Intact disulfide and perhaps the dimeric structure of TGF-beta is essential for its ability to stimulate chemotactic migration of fibroblasts, since reduction with 2-ME results in a marked loss of its potency as a chemoattractant. Although epidermal growth factor (EGF) appears to be capable of modulating some effects of TGF-beta, it does not alter the chemotactic response of fibroblasts to TGF-beta. Specific polyvalent rabbit antibodies to homogeneously pure TGF-beta block its chemotactic activity but has no effect on the other chemoattractants tested (platelet-derived growth factor, fibronectin, and denatured type I collagen). Since TGF-beta is secreted by a variety of neoplastic and normal cells including platelets, monocytes/macrophages, and lymphocytes, it may play a critical role in vivo in embryogenesis, host response to tumors, and the repair response that follows damage to tissues by immune and nonimmune reactions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Latent transforming growth factor-beta 1 associates to fibroblast extracellular matrix via latent TGF-beta binding protein

            The role of latent transforming growth factor-beta (TGF-beta) binding protein (LTBP) in the association of TGF-beta 1 to the extracellular matrix of cultured fibroblasts and HT-1080 fibrosarcoma cells was studied by immunochemical methods. The matrices were isolated from the cells, and the levels of LTBP and TGF-beta 1 were estimated by immunoblotting and immunoprecipitation. LTBP, TGF-beta 1, and its propeptide (latency-associated peptide, LAP) were found to associate to the extracellular matrix. Immunoblotting analysis indicated that treatment of the cells with plasmin resulted in a concomitant time and dose dependent release of both LTBP and TGF-beta 1 from the extracellular matrix to the supernatant. Comparison of molecular weights suggested that plasmin treatment resulted in the cleavage of LTBP from the high molecular weight fibroblast form to a form resembling the low molecular weight LTBP found in platelets. Pulse- chase and immunoprecipitation analysis indicated that both the free form of LTBP and LTBP complexed to latent TGF-beta were efficiently incorporated in the extracellular matrix, from where both complexes were slowly released to the culture medium. Addition of plasmin to the chase solution resulted, however, in a rapid release of LTBP from the matrix. Fibroblast derived LTBP was found to associate to the matrix of HT-1080 cells in a plasmin sensitive manner as shown by immunoprecipitation analysis. These results suggest that the latent form of TGF-beta 1 associates with the extracellular matrix via LTBP, and that the release of latent TGF-beta 1 from the matrix is a consequence of proteolytic cleavage(s) of LTBP.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Following the molecular pathways toward an understanding of the pathogenesis of systemic sclerosis.

                Bookmark

                Author and article information

                Journal
                Pediatr Rheumatol Online J
                Pediatric Rheumatology Online Journal
                BioMed Central
                1546-0096
                2007
                3 December 2007
                : 5
                : 22
                Affiliations
                [1 ]Meir Medical Center, Kfar Saba, Tel Aviv University, Israel
                [2 ]Divisions of Rheumatology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
                [3 ]Departments of HPME and PHS, University of Toronto, Toronto, Canada
                [4 ]Divisions Dermatology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
                [5 ]Departments of Immunology and Medical Sciences, University of Toronto, Toronto, Canada
                Article
                1546-0096-5-22
                10.1186/1546-0096-5-22
                2233624
                18053185
                18670212-40cd-4e79-915e-a00cebfdd031
                Copyright © 2007 Uziel et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 August 2007
                : 3 December 2007
                Categories
                Research

                Pediatrics
                Pediatrics

                Comments

                Comment on this article