15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Purification and characterization of a chymosin from Rhizopus microsporus var. rhizopodiformis.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purification and characterization of a chymosin from Rhizopus microsporus var. rhizopodiformis were investigated in the present study. A newly isolated R. microsporus var. rhizopodiformis F518 produced a high level of milk-clotting activity (1,001 SU/mL). A chymosin from the fungus was purified 3.66-fold with a recovery yield of 33.2 %. The enzyme appeared as a single protein band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with a molecular mass of 37.0 kDa. It was optimally active at 60 °C and was stable up to 40 °C. The purified enzyme was an acid protease with an optimum pH of 5.2 and retained 80 % of residual activity within pH 2.0-8.0. The inhibition of 96 and 100 % by pepstatin A at 0.01 and 0.02 mM, respectively, revealed that the enzyme is an aspartic protease. Thus, high milk-clotting activity of the chymosin with good stability will strengthen the potential use of the chymosin as a substitute for calf rennet in cheese manufacturing.

          Related collections

          Author and article information

          Journal
          Appl. Biochem. Biotechnol.
          Applied biochemistry and biotechnology
          Springer Nature America, Inc
          1559-0291
          0273-2289
          Sep 2014
          : 174
          : 1
          Affiliations
          [1 ] College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, PO Box 294, No.17 Qinghua Donglu, Haidian District, Beijing, 100083, China.
          Article
          10.1007/s12010-014-1044-6
          25035104
          18701f89-6a70-4d44-8c1c-039d05414d72
          History

          Comments

          Comment on this article