17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Claudins in teleost fishes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Teleost fishes are a large and diverse animal group that represent close to 50% of all described vertebrate species. This review consolidates what is known about the claudin (Cldn) family of tight junction (TJ) proteins in teleosts. Cldns are transmembrane proteins of the vertebrate epithelial/endothelial TJ complex that largely determine TJ permeability. Cldns achieve this by expressing barrier or pore forming properties and by exhibiting distinct tissue distribution patterns. So far, ~63 genes encoding for Cldn TJ proteins have been reported in 16 teleost species. Collectively, cldns (or Cldns) are found in a broad array of teleost fish tissues, but select genes exhibit restricted expression patterns. Evidence to date strongly supports the view that Cldns play a vital role in the embryonic development of teleost fishes and in the physiology of tissues and organ systems studied thus far.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste.

          The fish gill is a multipurpose organ that, in addition to providing for aquatic gas exchange, plays dominant roles in osmotic and ionic regulation, acid-base regulation, and excretion of nitrogenous wastes. Thus, despite the fact that all fish groups have functional kidneys, the gill epithelium is the site of many processes that are mediated by renal epithelia in terrestrial vertebrates. Indeed, many of the pathways that mediate these processes in mammalian renal epithelial are expressed in the gill, and many of the extrinsic and intrinsic modulators of these processes are also found in fish endocrine tissues and the gill itself. The basic patterns of gill physiology were outlined over a half century ago, but modern immunological and molecular techniques are bringing new insights into this complicated system. Nevertheless, substantial questions about the evolution of these mechanisms and control remain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Claudin-1 and -2: Novel Integral Membrane Proteins Localizing at Tight Junctions with No Sequence Similarity to Occludin

            Occludin is the only known integral membrane protein localizing at tight junctions (TJ), but recent targeted disruption analysis of the occludin gene indicated the existence of as yet unidentified integral membrane proteins in TJ. We therefore re-examined the isolated junction fraction from chicken liver, from which occludin was first identified. Among numerous components of this fraction, only a broad silver-stained band ∼22 kD was detected with the occludin band through 4 M guanidine-HCl extraction as well as sonication followed by stepwise sucrose density gradient centrifugation. Two distinct peptide sequences were obtained from the lower and upper halves of the broad band, and similarity searches of databases allowed us to isolate two full-length cDNAs encoding related mouse 22-kD proteins consisting of 211 and 230 amino acids, respectively. Hydrophilicity analysis suggested that both bore four transmembrane domains, although they did not show any sequence similarity to occludin. Immunofluorescence and immunoelectron microscopy revealed that both proteins tagged with FLAG or GFP were targeted to and incorporated into the TJ strand itself. We designated them as “claudin-1” and “claudin-2”, respectively. Although the precise structure/function relationship of the claudins to TJ still remains elusive, these findings indicated that multiple integral membrane proteins with four putative transmembrane domains, occludin and claudins, constitute TJ strands.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome duplication, a trait shared by 22000 species of ray-finned fish.

              Through phylogeny reconstruction we identified 49 genes with a single copy in man, mouse, and chicken, one or two copies in the tetraploid frog Xenopus laevis, and two copies in zebrafish (Danio rerio). For 22 of these genes, both zebrafish duplicates had orthologs in the pufferfish (Takifugu rubripes). For another 20 of these genes, we found only one pufferfish ortholog but in each case it was more closely related to one of the zebrafish duplicates than to the other. Forty-three pairs of duplicated genes map to 24 of the 25 zebrafish linkage groups but they are not randomly distributed; we identified 10 duplicated regions of the zebrafish genome that each contain between two and five sets of paralogous genes. These phylogeny and synteny data suggest that the common ancestor of zebrafish and pufferfish, a fish that gave rise to approximately 22000 species, experienced a large-scale gene or complete genome duplication event and that the pufferfish has lost many duplicates that the zebrafish has retained.
                Bookmark

                Author and article information

                Journal
                Tissue Barriers
                Tissue Barriers
                TB
                Tissue Barriers
                Landes Bioscience
                2168-8362
                2168-8370
                01 July 2013
                19 June 2013
                19 June 2013
                : 1
                : 3
                : e25391
                Affiliations
                Department of Biology; York University; Toronto, ON, Canada
                Author notes
                [* ]Correspondence to: Scott P Kelly, Email: spk@ 123456yorku.ca
                Article
                2013TISSBARRIER018 25391
                10.4161/tisb.25391
                3875606
                24665402
                18770d03-124a-4634-86f1-d69676a98f3f
                Copyright © 2013 Landes Bioscience

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                : 26 April 2013
                : 09 June 2013
                Categories
                Review

                fugu,tetraodon,claudin,epithelium,paracellular permeability,teleost fish,tight junction,whole genome duplication,zebrafish

                Comments

                Comment on this article